Курсовая работа: Конечные группы со сверхразрешимыми подгруппами четного индекса
Пусть - минимальная нормальная в подгруппа. Тогда . Если , то индекс в четен и должна быть сверхразрешимой. Противоречие. Поэтому - простая подгруппа и изоморфна или . Теперь нечетен, и - подгруппа из .
Если , то , поэтому .
Пусть , - простое. Так как - циклическая группа порядка , то либо совпадает с , либо G совпадает с . Пусть и - подгруппа из N порожденная инволюцией. Так как внешний автоморфизм группы централизует , см. , с.317, то по теореме Машке в силовской 2-подгруппе группы есть подгруппа индекса 2 в , допустимая относительно . Теперь - - не 2-нильпотентная подгруппа четного индекса в и не принадлежит .
9. для .
Пусть - подгруппа четного индекса в группе , где , и пусть - центральная инволюция в . Если , то - подгруппа в четного индекса. Так как , то сверхразрешима, поэтому и сверхразрешима.
Пусть не принадлежит . Тогда . Допустим, что несверхразрешима. Так как - подгруппа из , то из доказательства леммы 7 следует, что изоморфна или . Но теперь силовская 2-подгруппа в элементарная абелева, противоречие.
теоремы. Достаточность вытекает из лемм 6-9. Докажем необходимость. Пусть вначале - разрешимая группа, и . Если - не 2-группа, то легко проверить, что и по лемме 6 группа из пункта 2 теоремы.
Пусть неразрешима. Если , то по лемме 8 теорема верна. Пусть . Если разрешима, то разрешима и группа , противоречие. Следовательно, подгруппа имеет четный индекс в группе . Так как сверхразрешима и , то - 2-группа, отличная от силовской 2-подгруппы. Пусть - централизатор подгруппы в группе .
Для каждого нечетного простого подгруппа имеет четный индекс, поэтому сверхразрешима и 2-нильпотентна. Поэтому для всех нечетных и индекс в группе четен или равен 1. Если , то в есть нормальная подгруппа нечетного порядка, противоречие. Значит, и содержится в центре .
Если , то - квазипростая группа и не изоморфна . Так как , то по лемме 8 группа изоморфна или . Теперь по теореме из , с.646 группа изоморфна или .
Пусть - собственная в подгруппа. Тогда имеет нечетный индекс и . Так как - собственная в подгруппа, то из леммы 8 получаем, что изоморфна , a изоморфна . Противоречие. Теорема доказана полностью.
2. Конечные группы со сверхразрешимыми подгруппами непримарного индекса
Задача С.Н. Черникова об описании конечных групп, у которых подгруппы непримарного индекса нильпотентны, решена в 1975 г. С.С. Левищенко. Конечные группы с формационными подгруппами непримарных индексов рассматривались А.В. Сидоровым.
В настоящей статье изучаются конечные группы со сверхразрешимыми подгруппами непримарного индекса. Доказаны следующие две теоремы.
B. неразрешимая группа, у которой все подгруппы непримарного индекса сверхразрешимы, изоморфна одной из следующих групп:
1) или , где - 5-группа;
2) , где - 3-группа.
C. - разрешимая недисперсивная группа, у которой все подгруппы непримарного индекса сверхразрешимы. Тогда бипримарна, и - дисперсивная группа порядка , где .
Далее, если , то
и делит . Если , то
группа Шмидта, и Q - элементарная абелева группа или группа кватернионов.
Здесь - наибольшая нормальная в