Курсовая работа: Конечные группы со сверхразрешимыми подгруппами четного индекса
Здесь - центр группы , - наибольшая нормальная в подгруппа нечетного порядка. Через обозначим класс конечных групп, у которых все подгруппы четного индекса сверхразрешимы.
1. - наследственный гомоморф, т.е. каждая подгруппа и каждая факторгруппа группы также принадлежит осуществляется проверкой.
Отметим, что знакопеременная группа, но не содержится в . Поэтому не является формацией и не является классом Фиттинга.
Через обозначается симметрическая группа степени 4. Конечная группа называется -свободной, если в ней нет подгрупп и таких, что нормальна в и изоморфна .
2. , то ----свободна.
. Допустим противное, т.е. предположим, что существует секция , изоморфная . Тогда существует подгруппа индекса 2 в и изоморфна . Так как несверхразрешима, то - несверхразрешимая подгруппа четного в индекса. Противоречие. Лемма доказана.
Конечная группа называется 2-нильпотентной, если в ней существует нормальное дополнение к силовской 2-подгруппе. Полупрямое произведение нормальной подгруппы и подгруппы обозначается через .
3. и не 2-нильпотентна, то силовская 2-подгруппа в элементарная абелева или типа .
Если не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , см. , с. 192. Так как несверхразрешима, то индекс в группе нечетен, и - силовская 2-подгруппа из . Из свойств подгрупп Шмидта следует, что элементарная абелева или типа .
4. - разрешимая группа и , то 2-длина группы не превосходит 1.
следует из леммы 3 и леммы 3.4 из .
5. - разрешимая группа и . Если и силовская 2-подгруппа из неабелева, то центр совпадает с центром .
Если G - 2-группа, то лемма справедлива.
Пусть не 2-группа. По лемме 4 подгруппа нормальна в . Через обозначим -холловскую подгруппу из . Так как имеет четный индекс, то сверхразрешима и . Теперь содержится в центре , а поскольку , то - 2-группа. Группа не является 2-нильпотентной, поэтому существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то индекс нечетен и - силовская 2-подгруппа из . Следовательно, содержится в и по лемме 2.2 получаем, что содержится в . Лемма доказана.
6. - разрешимая группа и . Тогда и только тогда , когда - группа Фробениуса, ядро которой - минимальная нормальная подгруппа порядка , где - показатель 2 по каждому нечетному простому делителю порядка группы .
Пусть - разрешимая группа, и . Из лемм 3,4 и 5 получаем, что силовская 2-подгруппа нормальна в и является элементарной абелевой подгруппой. Так как - не 2-группа, то в существует 2-замкнутая подгруппа Шмидта , где - силовская 2-подгруппа из . Подгруппа несверхразрешима, поэтому ее индекс нечетен и силовская в . Из свойств групп Шмидта следует, что - минимальная нормальная в подгруппа порядка , и - показатель 2 по модулю , где делит . Поэтому - минимальная нормальная в подгруппа.
Централизатор содержит и нормален в , поэтому и . Значит самоцентрализуема.
Пусть - -холловская подгруппа в . Тогда - максимальная в подгруппа и совпадает со своим нормализатором. Предположим, что существует неединичный элемент в такой, что не содержится в . Так как и содержится в , то и . Пусть . Тогда , а по теореме Машке в существует подгруппа такая, что и допустима относительно , т.е. . Но индекс подгруппы четен поэтому эта подгруппа сверхразрешима и . Теперь централизует всю силовскую подгруппу , противоречие.
Следовательно, содержится в для всех неединичных элементов из и - группа Фробениуса с ядром , см. , с.630.
Пусть - произвольный нечетный делитель порядка группы , и пусть - -холловская подгруппа из . Так как самоцентрализуема, то не 2-нильпотентна и в существует 2-замкнутая подгруппа Шмидта . Поскольку не 2-нильпотентна, то ее индекс нечетен и - элементарная абелева подгруппа порядка . Из свойств групп Шмидта следует, что - показатель 2 по модулю . Необходимость доказана.
Обратно, пусть - группа Фробениуса, ядро которой - минимальная нормальная в подгруппа порядка где - показатель 2 по каждому нечетному простому делителю порядка . Пусть - произвольная подгруппа из . Тогда либо , либо , либо , либо - группа Фробениуса с ядром . Если , то индекс нечетен. Если или , то 2-нильпотентна. Пусть - группа Фробениуса и не содержится в . Поскольку не 2-нильпотентна, то в существует 2-замкнутая подгруппа Шмидта , где - нормальная в силовская подгруппа порядка , а - циклическая -подгруппа. Так как - элементарная абелева, то из свойств группы Шмидта вытекает, что - показатель 2 по модулю , значит и , т.е. . Лемма доказана полностью.
Следствие. Пусть - разрешимая группа и . Тогда и только тогда , когда каждая подгруппа из четного индекса является 2-подгруппой или группой нечетного порядка.
1. Пусть - элементарная абелева группа порядка . В группе ее автоморфизмов существует самоцентрализуемая циклическая подгруппа порядка см. , с.187. Число 11 является показателем 2 по модулю 23 и по модулю 89. Поэтому в классе существует группа Фробениуса, удовлетворяющая заключению леммы, и не являющаяся группой Шмидта.
Лемма 7. и - простая неабелева группа, то .
Если силовская 2-подгруппа в типа то по теореме из . Но в этой группе есть несверхразрешимая подгруппа четного индекса в нормализаторе силовской 2-подгруппы. По лемме 3 силовская 2-подгруппа в элементарная абелева. В группах Янко и Ри есть неразрешимые подгруппы четного индекса в централизаторах инволюций.
Рассмотрим группу , где и . Если , то - несверхразрешимая подгруппа четного индекса. Следовательно, . В силовская 2-подгруппа имеет порядок 4 и несверхразрешимые подгруппы изоморфны знакопеременным группам и .
Рассмотрим . Если не простое, то содержит подгруппу , , четного индекса, которая несверхразрешима. Значит, - простое. Несверхразрешимыми в являются только нормализаторы силовских 2-подгрупп.
Из теоремы Уолтера следует, что других простых групп, кроме рассмотренных, нет.
Через обозначим разрешимый радикал группы .