Курсовая работа: Корни многочленов от одной переменной
f (x) +g (x) =g (x) +f (x),
f (x) + (g (x) +h (x)) = (f (x) +g (x)) +h (x),
f (x) g (x) =g (x) f (x),
f (x) (g (x) h (x)) = (f (x) g (x)) h (x),
f (x) (g (x) +h (x)) =f (x) g (x) +f (x) h (x).
Установим еще несколько полезных свойств операций над многочленами.
Пусть даны два многочлена f ( x) = an xn + an -1 xn -1 +... +a1 x+a0 , an ≠0 , и g (x) =bm xm +bm-1 xm-1 +... + b1 x+ bm ≠0. Ясно, что ст. f ( x) = n , а ст. g ( x) = m . Нетрудно заметить, что если перемножить эти два многочлена, получится многочлен вида f ( x) g ( x) = an bm xm + n +... + a0 b0 . Так как an ≠0 и bn ≠0 , то an bm ≠0 , а значит, ст. (f ( x) g ( x)) = m+ n. Отсюда следует важное утверждение.
Степень произведения двух ненулевых многочленов равна сумме степеней сомножителей, или, короче, ст. ( f ( x) g ( x)) =ст. f ( x) +ст. g ( x).
Легко доказать, что аналогичное утверждение имеет место для любого конечного числа ненулевых сомножителей, т.е. что ст. (f1 ( x) f2 ( x)... fs ( x)) = ст. f1 ( x) + ст. f2 ( x) +... + ст. fs ( x).
Из рассуждений, приведенных выше для степени произведения двух многочленов, следует два полезных утверждения, которые легко распространяются на любое конечное число сомножителей.
Старший член (коэффициент) произведения двух ненулевых многочленов равен произведению старших членов (коэффициентов) сомножителей .
Свободный член произведения двух многочленов равен произведению свободных членов сомножителей.
Степени многочленов f ( x), g ( x) и f ( x) ± g ( x) связаны следующим соотношением: ст. ( f ( x) ± g ( x)) ≤ maxст. f ( x), ст. g ( x) .
Напомним, что многочлен - выражение вид an xn + an -1 xn -1 + … + + a1 x+ a0 .
Будут ли многочленами выражения: 2 x2 +4+3 x3 ; (x2 -1) (2 x+5); (x2 +1) ( x-3) + 2 x ?
Попробуем разобраться в этом.
Первое выражение можно рассматривать как сумму многочленов f1 ( x) =2 x2 , f2 ( x) +4, fa ( x) +3 x3 . Но, как известно, сумма многочленов - это тоже многочлен. Значит, первое выражение можно считать неудачно записанным многочленом. Воспользовавшись тем, что при сложении многочленов слагаемые можно переставлять местами, получим 2 x2 +4+3 x3 = f1 ( x) + f2 ( x) + f3 ( x) = f3 ( x) + f1 ( x) + f2 ( x) =3 x3 +2 x2 +4.
Аналогично второе выражение - это произведение многочленов g1 ( x) = x2 -1 и g2 ( x) =2 x+5, а значит, тоже многочлен. Легко убедиться, что и третье выражение также является многочленом.
Теперь познакомимся с еще одной операцией над многочленами - суперпозицией.
Суперпозицией многочленов f ( x) и g ( x) называется многочлен, обозначаемый f ( g ( x)), который получается если в многочлене f ( x) вместо x подставить многочлен g ( x).
Например, если f ( x) = x2 +2 x-1 и g ( x) =2 x+3, то f ( g ( x)) = f (2 x + 3) = (2 x+ 3) 2 +2 (2 x+3) - 1=4 x2 +16 x+14, g ( f ( x)) = g ( x2 +2 x-1) =2 ( x2 +2 x - 1) +3=2 x2 +4 x+1.
Видно, что f ( g ( x)) ≠ g ( f ( x)), т.е. суперпозиция многочленов f ( x), g ( x) и суперпозиция многочленов g ( x), f ( x) различны. Таким образом, операция суперпозиции не обладает свойством переместительности.
Схема Горнера
Разделить с остатком многочлен f ( x) на ненулевой многочлен g ( x) - это значит представить f ( x) в виде f ( x) = g ( x) s ( x) + r ( x), где s ( x) и r ( x) -многочлены и либо r ( x) =0, либо ст. r ( x) < ст. g ( x). S ( x) назовем неполным частным , а r ( x) - остатком при делении f ( x) на g ( x).
Неполное частное при делении можно найти с помощью простого правила, называемого схемой Горнера, которое, кстати, позволяет найти и остаток.
Пусть f (x) =an xn +an-1 xn-1 + … + a1 x+ a0, an ≠ 0 - многочлен n-й степени. При делении его на x- c мы получим неполное частное s ( x) и остаток r , т.е.f ( x) = ( x- c) s ( x) + r. Так как ст. f ( x) = n, а ст. (x - c) = 1 ,то
ст. s (x) = n - 1 , т.е. s (x) = bn-1 xn-1 + bn-2 xn-2 + … + b1 x+ b0 , bn -1 ≠ 0. Таким обрзом, имеем равенство
an xn +an-1 xn-1 + … +a1 x+a0 = (x - c) (bn-1 xn-1 +bn-2 xn-2 + …+b1 x+b0 ) +r.
Многочлены, стоящие в левой и правой частях этого соотношения, равны, а значит, равны их соответствующие коэффициенты. Приравняем их, раскрыв предварительно скобки и приведя подобные члены в правой части данного равенства. Получим:
a= bn-1, a-1 = bn-2 - cbn-1, a-2 = bn-3 - cbn-2,