Курсовая работа: Математические методы в решении экономических задач

Дадим математическую формулировку задачи. Пусть Х1 и Х2 — количество изделий А1 и А2, запланированных к производству. Так как количество сырья по каждому виду ограничено, то должны выполняться следующие неравенства:

Эта система неравенств и является системой ограничений данной задачи. Целевая функция (линейная форма), выражающая прибыль предприятия, имеет вид

F = 30Х₁ +49Х₂.

Итак, задача сводится к нахождению максимума функции F = 30Х₁ +49Х₂ при ограничениях:


Для сведения системы ограничений-неравенств к системе уравнений прибавим к левой части каждого неравенства добавочные неотрицательные переменные Х3, Х4, Х5. В условиях данной задачи они имеют конкретное экономическое содержание, а именно выражают объем остатков сырья каждого вида после выполнения плана по выпуску продукции. После введения добавочных переменных получим систему уравнений:


5Х1+2Х2+Х3 = 750

4Х1+5 Х2+ Х4 = 807

Х1+7Х2+Х5 = 840

Хi≥0, i=1….5

Нужно найти такое допустимое базисное решение этой системы ограничений, которое бы максимизировало линейную форму F = 30Х₁ +49Х₂.

Так как система ограничений есть система трех независимых уравнений с двумя переменными, то число базисных переменных должно равняться трём, а число свободных - двум.

Для решения задачи симплексным методом прежде всего нужно найти любое базисное решение. В данном случае это легко сделать. Для этого достаточно взять в качестве базисных добавочные переменные Х3, Х4, Х5. Так как коэффициенты при этих переменных образуют единичную матрицу, то отпадает необходимость вычислять определитель. Считая свободными переменные Х1 и Х2 равными нулю, получим базисное решение (0; 0; 750; 807; 840), которое к тому же оказалось допустимым. Переходим к поискам оптимального решения.

I ш а г. Базисные переменные: Х3, Х4, Х5; свободные переменные: Х1 и Х2. В системе (1.1) базисные переменные выразим через свободные. Для того чтобы судить, оставить ли свободные переменные в числе свободных или их выгоднее с точки зрения приближения к оптимальному решению перевести в базисные, следует выразить через них и линейную форму (в данном случае она уже выражена через переменные Х1 и Х2). Тогда получим:

Х3 = 750 - 5 Х1 - 2 Х2

Х4 = 807 - 4 Х1 - 5Х2

[Х5 = 840 - Х1 - 7Х2]

F = 30Х₁ +49Х₂

При Х1 = Х2 = 0 имеем Х3 = 750, Х4 = 807, Х5 = 840, что дает базисное решение (0; 0; 750; 807; 840), которое мы приняли за исходное. При этом базисном решении значение линейной формы


F = 30Х₁ +49Х₂ = 0.

Когда мы предположили, что Х1 = Х2 = 0 (предприятие ничего не выпускает), была поставлена цель — найти первое, безразлично какое, базисное решение. Эта цель достигнута. Теперь от этого первоначального решения нужно перейти к другому, при котором значение линейной формы увеличится. Из рассмотрения линейной формы видно, что ее значение возрастает при увеличении значений переменных Х1 и Х2. Иными словами, эти переменные невыгодно считать свободными, т. е. равными нулю, их нужно перевести в число базисных. Это и означает переход к новому базисному решению. При симплексном методе на каждом шаге решения предполагается перевод в число базисных только одной из свободных переменных. Переведем в число базисных переменную Х2 так как она входит в выражение линейной формы F = 30Х₁ +49Х₂ с большим коэффициентом.

Как только одна из свободных переменных переходит в число базисных, одна из базисных должна быть переведена на ее место в число свободных. Какую же из четырех базисных переменных нужно вывести? Ответить на этот вопрос помогут следующие рассуждения: значение Х2 необходимо сделать как можно большим, так как это соответствует конечной цели — максимизации F. Однако оказывается, что увеличение Х2 может продолжаться только до известных границ, а именно до тех пор, пока не нарушится требование неотрицательности переменных.

Х2 = min ; = min{375; 161,4; 120} = 120,

далее Х2 переведём в базисные вместо Х5.

II ш а г. Базисные переменные: Х3, Х4, Х2; свободные переменные: Х1, Х5. Выразим базисные переменные и линейную форму через свободные. В системе (1.2) берем то уравнение, из которого получено минимальное значение отношения свободного члена к коэффициенту при Х2. В данном случае это третье уравнение, которое выделено рамкой. Выразив из этого уравнения Х2, получим:

Х2 = 120 - Х1 - Х5

К-во Просмотров: 739
Бесплатно скачать Курсовая работа: Математические методы в решении экономических задач