Курсовая работа: Математические модели поведения производителей
Если цена единицы продукции равна р, а цена единицы ресурса j-го вида — wj ,j= 1, ..., n, то каждому вектору затрат х отвечает прибыль П(х) = pF(x)-wx, ( 4) где w= (w1, w2 ..., wn) — вектор-строка цен ресурсов. Цены ресурсов имеют естественный и понятный смысл: если хj — среднегодовое число занятых определенной профессии, то wj - годовая заработная плата одного работника данной профессии; если хj — по-купные материалы (топливо, энергия и т.п.), то wj — покупная цена единицы данного материала; если хj — производственные фонды определенного вида, то wj — годовая арендная плата за единицу фондов или стоимость поддержания единицы фондов в исправности, если фирма владеет этими средствами.
В (4) R = pX= pF(x) - стоимость годового выпуска фирмы или ее годовой доход, С = wx — издержки производства или стоимость затрат ресурсов за год.
Если нет других ограничений на размеры вовлекаемых в производ-ство ресурсов, кроме естественного требования их неотрицательности, то задача на максимум прибыли приобретает вид
max [pF(x)- wx] (5)
Это задача нелинейного программирования с п условиями неотрицательности х >0, необходимыми условиями ее решения являются условия Куна-Таккера (см. В. А. Колемаев «Математическая экономика», с.236, Приложение 4)
(6)
Если в оптимальном решении использованы все виды ресурсов, т.е. х* >0, то условия (6) принимают вид
или (7)
т.е. в оптимальной точке стоимость предельного продукта данного pесурса должна равняться его цене.
Точно такое же по форме решение имеет задача на максимум выпуска при заданном объеме издержек
max F(x), (8) wx С, х 0
Это задача нелинейного программирования с одним линейным ограничением и условием неотрицательности переменных. Согласно теории (см. Приложение 4) вначале строим функцию Лагранжа
L(x,) = F(x) + (C-wx),
затем максимизируем ее при условии неотрицательности переменных. Для этого необходимо выполнение условий Куна—Таккера
(9)
Как видим, условия (9) полностью совпадают с (6), если
Пример . Выпуск однопродуктовой фирмы задается следующей проиводственной функцией Кобба-Дугласа:
Х= F(K, L) = 3K2/3 L1/3
Определить максимальный выпуск, если на аренду фондов и оплату труда выделено 150 д.е., стоимость аренды единицы фондов wк = 5 д.е./е.ф., ставка заработной платы wL = 10 д.е./чел.
Какова предельная норма замены одного занятого фондами в оптимальной точке?
Решение. Поскольку F(0,L) = F(K, 0) = 0 , то в оптимальном решении К* > 0, L*>0 , поэтому условия (9) принимают вид