Курсовая работа: Математическое моделирование технических объектов
Математические модели могут представлять собой функциональные зависимости между выходными, внутренними и внешними параметрами.
Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта.
Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Такие модели имеют форму таблиц, матриц и графиков. Они наиболее широко используются на метоуровне при выборе технического объекта.
Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Их широко используют на всех иерархических уровнях, стадиях и этапах при функциональном, конструкторском и технологическом проектировании.
По способам получения функциональные математические модели делятся на:
1. Теоретические модели – получают на основе описания физических процессов функционирования объекта.
2. Экспериментальные модели – получают на основе поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик".
При построении теоретических моделей используют физический и формальный подходы. Физический подход сводится к непосредственному применению физических законов для описания объектов. Формальный подход используется при построении как теоретические, так и экспериментальные модели.
Функциональные математические модели могут быть:
1. Линейные модели, содержащие только линейные функции фазовых переменных и их производных.
2. Нелинейные математические модели, включающие в себя нелинейные функции фазовых переменных и их производных.
Если при моделировании учитывается инерциальные свойства технического объекта и (или) изменение во времени параметров объекта или внешней среды, то модель называют динамической. В противном случаи модель статическая. Выбор динамической или
статической модели определяется режимом работы технического объекта. Математическое представление динамической модели в общем случаи может быть выражено системой дифференциальных уравнений, а статической – системой алгебраических уравнений. Динамическая модель может также представлять собой интегральные уравнения, придаточные функции, а в аналитической форме – явные зависимости фазовых координат или выходных параметров технического объекта от времени.
1.3 Функции системы MathCAD
Встроенные функции системы:
MathCAD содержит более двухсот встроенных функций. Все они разбиты на группы. Для вставки стандартной функции необходимо на панели инструментов щелкнуть по кнопке f(x)- вставить функцию. Раскроется новое окно, в котором в левом списке будут представлены группы функции, а в правом – сами функции. Необходимо выбрать из списка нужную функцию и щелкнуть по кнопке "вставить"- Insert.
Основные встроенные функции:
1. тригонометрические функции [sin(x), cos(x), tan(x), cot(x),csc(x)];
2.гиперболические [sinh(x), cosh(x), tanh(x), coth(x), csch(x), sech(x)];
3. обратные тригонометрические [asin(x), acos(x), atan(x) и т.д.];
4. обратные гиперболические [asinh(x), acosh(x) и т.д.];
5. показательные и логарифмические[exp(x), ln(x), log(x), ].
Функции пользователя в MathCAD.
ользовательские функции применяются если одно и то же выражение должно быть рассчитано несколько раз для разных наборов исходных данных.
Формат записи функции пользователя:
<ИФ>(<СП>):=<Выражение>
где <ИФ> - имя функции (задается как любой идентификатор разрешенный системой);
(<СП >) - список параметров (в скобках через запятую указывается список функции);
<Выражение> - содержит доступные системе операторы и функции с аргументом указанным в списке параметров.