Курсовая работа: Математическое моделирование технических объектов

Математические модели могут представлять собой функциональные зависимости между выходными, внутренними и внешними параметрами.

Деление математических моделей на функциональные и структурные определяется характером отображаемых свойств технического объекта.

Структурные модели отображают только структуру объектов и используются при решении задач структурного синтеза. Параметрами структурных моделей являются признаки функциональных или конструктивных элементов, из которых состоит технический объект и по которым один вариант структуры объекта отличается от другого. Такие модели имеют форму таблиц, матриц и графиков. Они наиболее широко используются на метоуровне при выборе технического объекта.

Функциональные модели описывают процессы функционирования технических объектов и имеют форму систем уравнений. Их широко используют на всех иерархических уровнях, стадиях и этапах при функциональном, конструкторском и технологическом проектировании.

По способам получения функциональные математические модели делятся на:

1. Теоретические модели – получают на основе описания физических процессов функционирования объекта.

2. Экспериментальные модели – получают на основе поведения объекта во внешней среде, рассматривая его как кибернетический "черный ящик".

При построении теоретических моделей используют физический и формальный подходы. Физический подход сводится к непосредственному применению физических законов для описания объектов. Формальный подход используется при построении как теоретические, так и экспериментальные модели.

Функциональные математические модели могут быть:

1. Линейные модели, содержащие только линейные функции фазовых переменных и их производных.

2. Нелинейные математические модели, включающие в себя нелинейные функции фазовых переменных и их производных.

Если при моделировании учитывается инерциальные свойства технического объекта и (или) изменение во времени параметров объекта или внешней среды, то модель называют динамической. В противном случаи модель статическая. Выбор динамической или

статической модели определяется режимом работы технического объекта. Математическое представление динамической модели в общем случаи может быть выражено системой дифференциальных уравнений, а статической – системой алгебраических уравнений. Динамическая модель может также представлять собой интегральные уравнения, придаточные функции, а в аналитической форме – явные зависимости фазовых координат или выходных параметров технического объекта от времени.

1.3 Функции системы MathCAD

Встроенные функции системы:

MathCAD содержит более двухсот встроенных функций. Все они разбиты на группы. Для вставки стандартной функции необходимо на панели инструментов щелкнуть по кнопке f(x)- вставить функцию. Раскроется новое окно, в котором в левом списке будут представлены группы функции, а в правом – сами функции. Необходимо выбрать из списка нужную функцию и щелкнуть по кнопке "вставить"- Insert.

Основные встроенные функции:

1. тригонометрические функции [sin(x), cos(x), tan(x), cot(x),csc(x)];

2.гиперболические [sinh(x), cosh(x), tanh(x), coth(x), csch(x), sech(x)];

3. обратные тригонометрические [asin(x), acos(x), atan(x) и т.д.];

4. обратные гиперболические [asinh(x), acosh(x) и т.д.];

5. показательные и логарифмические[exp(x), ln(x), log(x), ].

Функции пользователя в MathCAD.

ользовательские функции применяются если одно и то же выражение должно быть рассчитано несколько раз для разных наборов исходных данных.

Формат записи функции пользователя:

<ИФ>(<СП>):=<Выражение>

где <ИФ> - имя функции (задается как любой идентификатор разрешенный системой);

(<СП >) - список параметров (в скобках через запятую указывается список функции);

<Выражение> - содержит доступные системе операторы и функции с аргументом указанным в списке параметров.


К-во Просмотров: 693
Бесплатно скачать Курсовая работа: Математическое моделирование технических объектов