Курсовая работа: Метод Галеркіна пошуку розв’язку лінійної крайової задачі
Захищена на Виконав студент групи СІ-31
„_______________” спеціальності „Соціальна інформатика”
„____” _____________200_ р. Буцький Владислав Володимирович
Полтава – 2007
ЗМІСТ
ВСТУП
РОЗДІЛ 1. Теоретична частина
1.1. Постановка задачі
1.2. Математична модель
РОЗДІЛ 2. Практична частина
2.1. Алгоритм методу
2.2. Блок-схема алгоритму
2.3. Тестовий приклад
ВИСНОВОК
СПИСОК ЛІТЕРАТУРНИХ ДЖЕРЕЛ
Додаток А
Вступ
В зв’язку з потребами нової техніки інженерна практика наших днів все частіше і частіше зустрічається з математичними задачами, точне розв’язання яких досить складне або невідоме. В цих випадках зазвичай вдаються до тих чи інших наближених обчислень. Ось чому наближені і чисельні методи математичного аналізу набули за останні роки широкого розвитку і отримали виключно важливе значення.
Зростання продуктивних сил в ХХ сторіччі зумовило рішучий прогрес в області обчислювальної техніки, що привів до створення сучасних електронних обчислювальних машин з пограмним управлінням. Це необмежено розширило обчислювальні можливості математики: задачі, для вирішення яких при ручному обрахунку були потрібні роки, зараз розв'язуються за декілька годин, причому безпосередній обрахунок займає хвилини.У свою чергу, нові обчислювальні засоби викликали переоцінку відомих методів розв’язання задач з погляду доцільності їх реалізації на сучасних обчислювальних машинах і стимулювали створення більш ефективних прийомів.
Сучасні електронні обчислювальні машини дали в руки дослідників ефективний засіб для математичного моделювання складних задач науки і техніки. Саме тому кількісні методи дослідження в даний час проникають практично у всі сфери людської діяльності, а математичні моделі стають засобом пізнання. Роль математичних моделей далеко не вичерпується проблемою пізнання закономірностей. Їх значення безперервно зростає у зв'язку з природною тенденцією до оптимізації технічних пристроїв і технологічних схем планування експерименту. В процесі пізнання і в прагненні створити детальну картину досліджуваних процесів ми приходимо до необхідності будувати все більш складні математичні моделі, які у свою чергу вимагають універсального тонкого математичного апарату. Реалізація
математичних моделей на ЕОМ здійснюється за допомогою методів обчислювальної математики, яка безперервно удосконалюється разом з прогресом в області електронно-обчислювальної техніки. Всяка редукція задач
математичної фізики або техніки зрештою звичайно зводиться до рівняння алгебри тієї або іншої структури. Тому предмет обчислювальної математики, як правило, пов'язаний з методами зведення задач до систем рівнянь алгебри і їх подальшого розв’язання.
Чисельні методи сьогодні - один з найпотужніших математичних засобів розв’язування задач. Найпростіші чисельні методи ми використовуємо постійно, наприклад, добуваючи квадратний корінь на аркуші паперу. У той час є задачі, де без достатньо складних чисельних методів не можна було б отримати відповіді; класичний приклад – відкриття Нептуна по аномаліях руху Урана.
Чисельні методи є основним інструментом розв’язання сучасних прикладних задач. Аналітичний розв’язок тієї або іншої задачі є швидше виключенням, ніж правилом через складнийі наближений характер досліджуваних моделей. От чому чисельний аналіз математичних моделей - метод, алгоритм, програма, обчислювальний експеримент - є в сьогоденні актуальним і найбільш ефективним апаратом конструктивного дослідження прикладних проблем.
РОЗДІЛ 1. Теоретична частина
1.1 Постановка задачі
Крайова задача – це задача знаходження власного роз’язку системи:
,
на відрізку , в якій додаткові умови накладаються на значення функцій більше ніж в одній точці цього відрізка. Очевидно, що крайові задачі можливі для систем порядку не нижче другого.
Свою первинну назву цей тип задач отримав з найпростіших випадків, коли частина додаткових умов задається на одному кінці відрізка, а інша частина – на другому (тобто тільки в точках х=а і х=b). Прикладом є задача знаходження статистичного прогину навантаженої струни із закріпленими кінцями
, , ; (1)
тут - зовнішнє згинаюче навантаження на одиницю довжини струни, поділене на пружність струни.
Для рівнянь або систем більш високих порядків, де число додаткових умов більше за два, постановки крайових умов більш різнобічні. При цьому можливі випадки, коли частина умов задана у внутрішніх точках відрізка [a, b]; їх нерідко називають внутрішніми крайовими умовами. Наприклад, статистичний прогин навантаженого пружного бруска задовольняє рівнянню четвертого порядку
, ; (2)
якщо цей брусок лежить в точках , , на опорах, то додаткові умови мають вид
, , ,
--> ЧИТАТЬ ПОЛНОСТЬЮ <--