Курсовая работа: Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[1 0 .54 0 .53;0 1 .32 .44 .45; .54 .32 1 .22 .41; 0 .44 .22 1 0; .53 .45 .41 0 1;]
f=[0.3;0.5;.7;.9;.6]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[1 0 .54 0 0;0 1 0 .44 .45; .54 0 1 .22 0; 0 .44 .22 1 0; 0 .45 0 0 1;]
f=[0.3;0.5;.7;.9;.6]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
mernost=[2 3 4 5];
plot(mernost,e1);
pause;
plot(mernost,e2);
pause
Результат работы программы:
a =
1.0000 0.4200 0.5400 0.6600 0.5300
0.4200 1.0000 0.3200 0.4400 0.4500
0.5400 0.3200 1.0000 0.2200 0.4100
0.6600 0.4400 0.2200 1.0000 0.2500
0.5300 0.4500 0.4100 0.2500 1.0000
f =
0.3000
0.5000
0.7000
0.9000