Курсовая работа: Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[1 0 .54 0 .53;0 1 .32 .44 .45; .54 .32 1 .22 .41; 0 .44 .22 1 0; .53 .45 .41 0 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

a=[1 0 .54 0 0;0 1 0 .44 .45; .54 0 1 .22 0; 0 .44 .22 1 0; 0 .45 0 0 1;]

f=[0.3;0.5;.7;.9;.6]

[e,x]=mkk(a,f)

e1=[e1 max(abs(e))]

e2=[e2 sqrt(sum(power(e,2)))]

mernost=[2 3 4 5];

plot(mernost,e1);

pause;

plot(mernost,e2);

pause

Результат работы программы:

a =

1.0000 0.4200 0.5400 0.6600 0.5300

0.4200 1.0000 0.3200 0.4400 0.4500

0.5400 0.3200 1.0000 0.2200 0.4100

0.6600 0.4400 0.2200 1.0000 0.2500

0.5300 0.4500 0.4100 0.2500 1.0000

f =

0.3000

0.5000

0.7000

0.9000

К-во Просмотров: 694
Бесплатно скачать Курсовая работа: Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений