Курсовая работа: Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений
б) посчитает четыре точности полученного решения по формуле E1 =max |Ei |,
в) посчитает четыре точности полученного решения по формуле
,
в которых i – количество решенных уравнений
г) построит два графика зависимости точностей полученного решения от мерности матрицы А.
Текст программы:
e1=0;
e2=0;
a=[1 0.42;.42 1]
f=[0.3;0.5]
[e,x]=mkk(a,f)
e1=max(abs(e))
e2=sqrt(sum(power(e,2)))
a=[1 0.42 .54;.42 1 .32; .54 .32 1;]
f=[0.3;0.5;.7]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[1 0.42 .54 .66;.42 1 .32 .44; .54 .32 1 .22; .66 .44 .22 1]
f=[0.3;0.5;.7;.9]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[1 0.42 .54 .66 .53;.42 1 .32 .44 .45; .54 .32 1 .22 .41; .66 .44 .22 1 .25; .53 .45 .41 .25 1;]
f=[0.3;0.5;.7;.9;.6]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
mernost=[2 3 4 5];