Курсовая работа: Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений
for k=2:n
t(1,k)=a(1,k)/t(1,1);
end
for j=2:n
for i=2:n
if (i==j)
c=0;
for k=1:(i-1)
c=c+t(k,i)^2;
end
t(i,i)=sqrt(a(i,i)-c);
else
if (i<j)
c=0;
for k=1:(i-1)
c=c+t(k,i)*t(k,j);
end
t(i,j)=(a(i,j)-c)/t(i,i);
end
end
end
end
y=zeros(n,1); %1.7 создаемстолбецу
y(1)=f(1)/t(1,1);
for i=2:n
c=0;
for k=1:(i-1)
c=c+t(k,i)*y(k);
end