Курсовая работа: Метод квадратных корней для симметричной матрицы при решении систем линейных алгебраических уравнений
a=[500 501;501 500]
f=[15000;16000]
[e,x]=mkk(a,f)
e1=max(abs(e))
e2=sqrt(sum(power(e,2)))
a=[500 501 -503;501 500 499;-503 499 500]
f=[15000;16000;18000]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[500 501 -503 500;501 500 499 -501;-503 499 500 502;500 -501 502 500]
f=[15000;16000;18000;16000]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
a=[500 501 -503 500 499;501 500 499 -501 500;-503 499 500 502 -501;500 -501 502 500 -500; 499 500 -501 -500 500]
f=[15000;16000;18000;16000;17000]
[e,x]=mkk(a,f)
e1=[e1 max(abs(e))]
e2=[e2 sqrt(sum(power(e,2)))]
mernost=[2 3 4 5];
plot(mernost,e1);
pause;
plot(mernost,e2);
pause
Результат работы программы:
>> head5
a =
500 501