Курсовая работа: Метод Монте Карло и его применение
. (2)
Сделаем замену переменных . (3)
Тогда, очевидно, m-мерный параллелепипед (2) преобразуется в m-мерный единичный куб (4)
и, следовательно, новая область интегрирования σ, которая находится по обычным правилам, будет целиком расположена внутри этого куба.
Вычисляя якобиан преобразования, будем иметь:
. Таким образом, , (5)
где . Введя обозначения и , запишем интеграл (5) короче в следующем виде: . (5/ )
Укажем способ вычисления интеграла (5/ ) методом случайных испытаний.
Выбираем m равномерно распределённых на отрезке [0, 1] последовательностей случайных чисел:
Точки можно рассматривать как случайные. Выбрав достаточно большое N число точек , проверяем, какие из них принадлежат области σ (первая категория) и какие не принадлежат ей (вторая категория). Пусть
1. при i=1, 2, …, n (6)
2. при i=n+1, n+2, …,N (6/ )
(для удобства мы здесь изменяем нумерацию точек).
Заметим, что относительно границы Г области σ следует заранее договориться, причисляются ли граничные точки или часть их к области σ, или не причисляются к ней. В общем случае при гладкой границе Г это не имеет существенного значения; в отдельных случаях нужно решать вопрос с учётом конкретной обстановки.
Взяв достаточно большое число n точек , приближённо можно положить: ; отсюда искомый интеграл выражается формулой , где под σ понимается m-мерный объём области интегрирования σ. Если вычисление объёма σ затруднительно, то можно принять: , отсюда . В частном случае, когда σ есть единичный куб, проверка становится излишней, то есть n=N и мы имеем просто .
Заключение.
Метод Монте-Карло используется очень часто, порой некритично и неэффективным образом. Он имеет некоторые очевидные преимущества:
а) Он не требует никаких предложений о регулярности, за исключением квадратичной интегрируемости . Это может быть полезным, так как часто очень сложная функция, чьи свойства регулярности трудно установить.
б) Он приводит к выполнимой процедуре даже в многомерном случае, когда численное интегрирование неприменимо, например, при числе измерений, большим 10.
в) Его легко применять при малых ограничениях или без предварительного анализа задачи.
Он обладает, однако, некоторыми недостатками, а именно:
а) Границы ошибки не определены точно, но включают некую случайность. Это, однако, более психологическая, чем реальная, трудность.
б) Статическая погрешность убывает медленно.
в) Необходимость иметь случайные числа.
Приложение.
Равномерно распределённые случайные числа
10 09 73 25 33 76 52 01 35 86 34 67 35 48 76 80 95 90 9117
37 54 20 48 05 64 89 47 42 96 24 80 52 40 37 20 63 61 04 02
08 42 26 89 53 19 64 50 93 03 23 20 90 25 60 15 95 33 47 64
99 01 90 25 29 09 37 67 07 15 38 31 13 11 65 88 67 67 43 97