Курсовая работа: Метод Ньютона для решения нелинейных уравнений

f(x)=0 (1)

Корнями уравнения (1) называются такие значения х, которые при подстановке обращают его в тождество. Только для простейших уравнений удается найти решение в виде формул, т.е. аналитическом виде. Чаще приходится решать уравнения приближенными методами, наибольшее распространение среди которых, в связи с появлением компьютеров, получили численные методы.

Алгоритм нахождения корней приближенными методами можно разбить на два этапа. На первом изучается расположение корней и проводится их разделение. Находится область [a,b], в которой существует корень уравнения или начальное приближение к корню x0 . Простейший способ решения этой задачи является исследование графика функции f(x) . В общем же случае для её решения необходимо привлекать все средства математического анализа.

Существование на найденном отрезке [a,b], по крайней мере, одного корня уравнения (1) следует из условия Больцано:

f(a)*f(b)<0 (2)

При этом подразумевается, что функция f(x) непрерывна на данном отрезке. Однако данное условие не отвечает на вопрос о количестве корней уравнения на заданном отрезке [a,b]. Если же требование непрерывности функции дополнить ещё требованием её монотонности, а это следует из знакопостоянства первой производной , то можно утверждать о существовании единственного корня на заданном отрезке.

При локализации корней важно так же знание основных свойств данного типа уравнения. К примеру, напомним, некоторые свойства алгебраических уравнений:

, (3)

где вещественные коэффициенты.

а) Уравнение степени n имеет n корней, среди которых могут быть как вещественные, так и комплексные. Комплексные корни образуют комплексно-сопряженные пары и, следовательно, уравнение имеет четное число таких корней. При нечетном значении n имеется, по меньшей мере, один вещественный корень.

б) Число положительных вещественных корней меньше или равно числа переменных знаков в последовательности коэффициентов . Замена х на –х в уравнении (3) позволяет таким же способом оценить число отрицательных корней.

На втором этапе решения уравнения (1), используя полученное начальное приближение, строится итерационный процесс, позволяющий уточнять значение корня с некоторой, наперед заданной точностью . Итерационный процесс состоит в последовательном уточнении начального приближения. Каждый такой шаг называется итерацией. В результате процесса итерации находится последовательность приближенных значений корней уравнения . Если эта последовательность с ростом n приближается к истинному значению корня x , то итерационный процесс сходится. Говорят, что итерационный процесс сходится, по меньшей мере, с порядком m, если выполнено условие:

, (4)


где С>0 некоторая константа. Если m=1 , то говорят о сходимости первого порядка; m=2 - о квадратичной, m=3 - о кубической сходимостях.

Итерационные циклы заканчиваются, если при заданной допустимой погрешности выполняются критерии по абсолютным или относительным отклонениям:

; (5,6)

или малости невязки:

(7)

Эта работа посвящена изучению алгоритма решения нелинейных уравнений с помощью метода Ньютона.

1.1 Обзор существующих методов решения нелинейных уравнений

Существует много различных методов решения нелинейных уравнений, некоторые из них представлены ниже:

1)Метод итераций . При решении нелинейного уравнения методом итераций воспользуемся записью уравнения в виде x=f(x). Задаются начальное значение аргумента x0 и точность ε. Первое приближение решения x1 находим из выражения x1 =f(x0 ), второе - x2 =f(x1 ) и т.д. В общем случае i+1 приближение найдем по формуле xi+1 =f(xi). Указанную процедуру повторяем пока |f(xi)|>ε. Условие сходимости метода итераций |f'(x)|<1.

2)Метод Ньютона . При решении нелинейного уравнения методом Ньтона задаются начальное значение аргумента x0 и точность ε. Затем в точке(x0 ,F(x0 )) проводим касательную к графику F(x) и определяем точку пересечения касательной с осью абсцисс x1 . В точке (x1 ,F(x1 )) снова строим касательную, находим следующее приближение искомого решения x2 и т.д. Указанную процедуру повторяем пока |F(xi)| > ε. Для определения точки пересечения (i+1) касательной с осью абсцисс воспользуемся следующей формулой xi+1 =xi -F(xi )\ F’(xi ). Условие сходимости метода касательных F(x0 )∙F''(x)>0, и др.

3). Метод дихотомии. Методика решения сводится к постепенному делению начального интервала неопределённости пополам по формуле Сккк /2.

Для того чтобы выбрать из двух получившихся отрезков необходимый, надо находить значение функции на концах получившихся отрезков и рассматривать тот на котором функция будет менять свой знак, то есть должно выполняться условие f (ак )* f (вк )<0.

Процесс деления отрезка проводится до тех пор, пока длина текущего интервала неопределённости не будет меньше заданной точности, то есть

вк – ак < E. Тогда в качестве приближенного решения уравнения будет точка, соответствующая середине интервала неопределённости.

4). Метод хорд . Идея метода состоит в том, что на отрезке [a,b] строится хорда стягивающая концы дуги графика функции y=f(x), а точка c, пересечения хорды с осью абсцисс, считается приближенным значением корня

c = a - (f(a)Ч (a-b)) / (f(a) - f(b)),

c = b - (f(b)Ч (a-b)) / (f(a) - f(b)).

К-во Просмотров: 427
Бесплатно скачать Курсовая работа: Метод Ньютона для решения нелинейных уравнений