Курсовая работа: Метод Ньютона для решения нелинейных уравнений
Пример 5
Решить уравнение методом Ньютона.
-2+ex - e-x =0.
Решение:
Вычислим первую производную функции.
F’(x) = ex +e-x .
Теперь вычислим вторую производную от функции.
F’’(x) = ex -e-x .
Построим приближённый график данной функции.
Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x(0) ) * f’’(x(0) ) > 0.
Пусть x(0) = 1, тогда f(2)*f’’(2) = 0. 350 * 2, 350 = 0. 823 > 0,
Условие выполняется, значит берём x(0) = 1.
Теперь составим таблицу значений, для решения данного уравнения.
k | x(k) | f(x(k)) | f’(x(k)) | | x(k+1) - x(k) | |
0 | 1, 000 | 0, 350 | 3, 086 | 0, 114 |
1 | 0, 886 | 0, 013 | 2, 838 | 0, 005 |
2 | 0, 881 | 0, 001 | 2, 828 | 0, 000 |
3 | 0, 881 |
Отсюда следует, что корень уравнения х = 0, 881.
III. Разработка программного продукта
3.1 Описание программы
Данная программа создана для работы в текстовом и графическом режиме. Она состоит из модуля Graph, Crt, трёх функций и трёх процедур.
1. модуль Crt предназначен для обеспечения контроля над текстовыми режимами экрана, расширенными кодами клавиатуры, цветами, окнами и звуком;
2. модуль Graph предназначен для обеспечения контроля над графическими объектами;
3. procedure GrafInit - инициализирует графический режим;
4. function VF – вычисляет значение функции;
5. function f1 – вычисляет значение первой производной функции;
6. function X_Newt – реализует алгоритм решения уравнения методом Ньютона.
7. procedure FGraf – реализует построение графика заданной функции f(x);
Ots=35 - константа, определяющая количество точек для отступа от границ монитора;
fmin, fmax – максимальные и минимальные значения функции;
SetColor(4) – процедура, которая устанавливает текущий цвет графического объекта, используя палитру, в данном случае это красный цвет;
SetBkColor(9) – процедура, которая устанавливает текущий цвет фона, используя палитру, в данном случае – это светло-синий цвет.
8. Procedure MaxMinF – вычислят максимальные и минимальные значения функции f(x).