Курсовая работа: Метод Ньютона для решения нелинейных уравнений
Вычисления производить с точностью ε = 0, 001.
Решение:
Вычислим первую производную функции.
F’(x)=2x cosx2 - 2x sinx2 - 10.
Теперь вычислим вторую производную от функции.
F’’(x)=2cosx2 - 4x2 sinx2 - 2sinx2 - 4x2 cosx2 = cosx2 (2-4x2 ) - sinx2 (2+4x2 ).
Построим приближённый график данной функции.
Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x(0) ) * f’’(x(0) ) > 0.
Пусть x(0) = 0, 565, тогда f(0. 565)*f’’(0. 565) = -4. 387 * (-0. 342) = 1. 5 > 0,
Условие выполняется, значит берём x(0) = 0, 565.
Теперь составим таблицу значений, для решения данного уравнения.
k | x(k) | f(x(k)) | f’(x(k)) | | x(k+1) - x(k) | |
0 | 0. 565 | -4. 387 | -9. 982 | 0. 473 |
1 | 0. 092 | 0. 088 | -9. 818 | 0. 009 |
2 | 0. 101 | 0. 000 | -9. 800 | 0. 000 |
3 | 0. 101 |
Отсюда следует, что корень уравнения х = 0, 101.
Пример 2
Решить уравнение методом Ньютона.
cos x – e-x2/2 + x - 1 = 0
Вычисления производить с точностью ε = 0, 001.
Решение:
Вычислим первую производную функции.
F’(x) = 1 – sin x + x*e-x2/2 .
Теперь вычислим вторую производную от функции.
F’’(x) = e-x2/2 *(1-x2 ) – cos x.
Построим приближённый график данной функции.
Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x(0) ) * f’’(x(0) ) > 0.
Пусть x(0) = 2, тогда f(2)*f’’(2) = 0. 449 * 0. 010 = 0.05 > 0,
Условие выполняется, значит берём x(0) = 2.
Теперь составим таблицу значений, для решения данного уравнения.
k | x(k) | f(x(k)) | f’(x(k)) | | x(k+1) - x(k) | |
0 | 2 | 0. 449 | 0. 361 | 1. 241 |
1 | -0. 265 | 0. 881 | 0. 881 | 0. 301 |
2 | -0. 021 | 0. 732 | 0. 732 | 0. 029 |
3 | 0. 000 | 0. 716 | 0. 716 | 0. 000 |
4 | 1. 089 |
Отсюда следует, что корень уравнения х = 1. 089.