Курсовая работа: Метод Ньютона для решения нелинейных уравнений

Вычисления производить с точностью ε = 0, 001.

Решение:

Вычислим первую производную функции.

F’(x)=2x cosx2 - 2x sinx2 - 10.

Теперь вычислим вторую производную от функции.

F’’(x)=2cosx2 - 4x2 sinx2 - 2sinx2 - 4x2 cosx2 = cosx2 (2-4x2 ) - sinx2 (2+4x2 ).

Построим приближённый график данной функции.


Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x(0) ) * f’’(x(0) ) > 0.

Пусть x(0) = 0, 565, тогда f(0. 565)*f’’(0. 565) = -4. 387 * (-0. 342) = 1. 5 > 0,

Условие выполняется, значит берём x(0) = 0, 565.

Теперь составим таблицу значений, для решения данного уравнения.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 0. 565 -4. 387 -9. 982 0. 473
1 0. 092 0. 088 -9. 818 0. 009
2 0. 101 0. 000 -9. 800 0. 000
3 0. 101

Отсюда следует, что корень уравнения х = 0, 101.

Пример 2

Решить уравнение методом Ньютона.

cos x – e-x2/2 + x - 1 = 0

Вычисления производить с точностью ε = 0, 001.

Решение:

Вычислим первую производную функции.

F’(x) = 1 – sin x + x*e-x2/2 .

Теперь вычислим вторую производную от функции.

F’’(x) = e-x2/2 *(1-x2 ) – cos x.

Построим приближённый график данной функции.

Теперь, исходя из графика, возьмём первый приближённый корень и проверим условие (16) : f(x(0) ) * f’’(x(0) ) > 0.

Пусть x(0) = 2, тогда f(2)*f’’(2) = 0. 449 * 0. 010 = 0.05 > 0,

Условие выполняется, значит берём x(0) = 2.

Теперь составим таблицу значений, для решения данного уравнения.

k x(k) f(x(k)) f’(x(k)) | x(k+1) - x(k) |
0 2 0. 449 0. 361 1. 241
1 -0. 265 0. 881 0. 881 0. 301
2 -0. 021 0. 732 0. 732 0. 029
3 0. 000 0. 716 0. 716 0. 000
4 1. 089

Отсюда следует, что корень уравнения х = 1. 089.

К-во Просмотров: 420
Бесплатно скачать Курсовая работа: Метод Ньютона для решения нелинейных уравнений