Курсовая работа: Методы решения уравнений, содержащих параметр
задано в виде некоторой функции от параметров:
х = х();
у = у();
z = z(). (Х)
Говорят, что система функций (Х), заданных совместно, удовлетворяет уравнению (F), если при подстановке этих функций вместо неизвестных х, у,..., z в уравнение (F) левая его часть обращается в нуль тождественно при всех допустимых значениях параметров:
F (x(), y(),…,z ())≡0.
При всякой допустимой системе численных значений параметров = α0, , ..., соответствующие значения функций (Х) образуют решение уравнения [1].
Анализ школьных учебников по алгебре и началам анализа
Проанализируем действующие учебники курса алгебры и начала анализа, чтобы выяснить, насколько в них представлены задания, использующие понятие «параметр», и методы решения уравнений, содержащих параметр.
Макарычев Ю.Н. и др. «Алгебра. 7 - 9 класс»
Алгебра. 7 класс.
При изучении уравнений представлено два задания с параметром (№№236, 243). Рассматриваются простейшие линейные уравнения, но коэффициент при х является параметром и необходимо исследовать на количество корней или принадлежность корня к целым числам.
Также в данном учебнике в §5 «Линейная функция» (глава 2 «Функции») рассматривается прямая пропорциональность, где, не вводя понятие параметр, его используют. А именно, выясняется расположение графика функции в зависимости от коэффициента , который и является параметром.
Следующие задания с параметром предлагаются уже только в дополнительных заданиях к главе «Системы линейных уравнений» (№№1214-1216), где необходимо найти значение параметра, если известна точка пересечения графиков (см. [28]).
Алгебра 8 класс.
При изучении темы «Квадратные уравнения» в разделе дополнительных упражнений для более углубленного повторения материала предлагаются уравнения, содержащие параметр (№№ 645, 646, 660, 663-672), где необходимо найти значение переменной (параметра), если известен корень уравнения или какое-то соотношение корней. Можно выделить два номера (№№ 661, 662), где необходимо найти значение параметра, если известны знаки корней уравнения.
При изучении остальных тем учебника 8 класса параметр не использовался.
Алгебра. 9 класс.
Использование параметра ведется в главе «Квадратичная функция». При формулировании свойств функции в зависимости от коэффициента , и предлагается для решения задача на нахождение нулей функции, которая зависит от параметра. В разделе «дополнительные задачи» приводятся задания с параметром на исследование:
области значений;
расположения графика относительно прямой;
вершины параболы; нулей функции;
принадлежность данных точек функции, содержащей два параметра.
При рассмотрении графиков функций и строятся предпосылки для решения уравнений, содержащих параметр, графическим методом (параллельный перенос).
При изучении систем уравнений предлагаются дополнительные задачи с параметром на исследование количества решений системы.
В системе упражнений для повторения курса VII-IX классов заданий, содержащих параметр, не представлено (см. [29]).
Мордкович. А. Г. «Алгебра 7 по 9 класс » и «Алгебра и начала анализа 10 – 11 класс»
Надо отметить, что данное учебное пособие состоит из двух частей: из учебника и задачника (см. [30], [31]).
При изучении линейной функции (7 класс глава 6 §28) рассматривается линейное уравнение с двумя переменными и его график, где учащихся знакомят с параметром в неявном виде, то есть при рассмотрении нахождения корня линейного уравнения с одной неизвестной ставится ограничение на переменную a (a0). При изучении параметра, такие значения переменной и будем называть особыми, для которых будут соответствовать частные решения.