Курсовая работа: Методы решения уравнений, содержащих параметр
Изучение многих физических процессов и геометрических закономерностей часто приводит к решению уравнений, содержащих параметр. Решение задач с параметрами вызывает большие трудности у учащихся, так как их изучение не является отдельной составляющей школьного курса математики, и рассматривается только на немногочисленных факультативных занятиях.
Трудности при изучении данного вида уравнений связаны со следующими их особенностями:
Обилие формул и методов, используемых при решении уравнений данного вида;
Возможность решения одного и того же уравнения, содержащего параметр различными методами;
Выше изложенное обусловило проблему исследования, которая заключается в исследовании целесообразности и возможности изучения методов решения уравнений, содержащих параметры, в старших классах средней школы и в разработке соответствующей методики. Решение этой проблемы составило цель исследования.
Объектом исследования является процесс обучения алгебре в 7-9 классах и алгебре и началам анализа в 10-11 классах.
Предметом исследования являются классы уравнений, содержащих параметры, и их методы решения.
Гипотеза исследования: применение разработанной на основе общих методов решения уравнений, содержащих параметры, методики их решения позволит учащимся решать уравнения, содержащие параметры, на сознательной основе, выбирать наиболее рациональный метод решения, применять разные методы решения.
Проблема, предмет, гипотеза исследования обусловили следующие задачи:
проанализировать действующие учебники алгебры и начала анализа для выявления в них использования понятия «параметра» и методов решения уравнений, содержащих параметр;
выделить классы уравнений, содержащих параметры, и их методы решения;
разработать программу факультативных занятий на тему «Методы решения уравнений, содержащих параметр»;
осуществить опытное преподавание.
Теоретические основы решения уравнений, содержащих параметр
Рассмотрим уравнение
(F)
с неизвестными х, у, ..., z и с параметрами . При всякой допустимой системе значений параметров α0, β0, ..., γ0 уравнение (F) обращается в уравнение
(F0)
с неизвестными х, у,..., z, не содержащих параметров. Уравнение (F0) имеет некоторое вполне определенное множество (быть, может, пустое) решений.
Аналогично рассматриваются неравенства и системы, содержащие параметры. Допустимыми системами значений параметров считаются системы, допустимые для каждого уравнения в отдельности.
Определение. Решить уравнение, содержащее параметры, это значит, для каждой допустимой системы значений параметров найти множество всех решений данного уравнения.
Понятие эквивалентности применительно к уравнениям, содержащие параметр, устанавливается следующим образом.
Определение. Два уравнения
F(х, у, ..., z; ) =0 (F),
Ф (х, у, ..., z; ) =0 (Ф)
с неизвестным х, у,..., z и с параметрами называются эквивалентными, если для обоих уравнений множество допустимых систем значений параметров одно и то же и при всякой допустимой системе значений, параметров оба уравнения эквивалентны.
Итак, эквивалентные уравнения при всякой допустимой системе значений параметров имеют одно и то же множество решений.
Преобразование уравнения, изменяющее множество допустимых систем значений параметров, приводит к уравнению, не эквивалентному данному уравнению.
Предположим, что каждое из неизвестных, содержащихся в уравнении
--> ЧИТАТЬ ПОЛНОСТЬЮ <--