Курсовая работа: Методы решения уравнений, содержащих параметр

при а <1 уравнение не имеет решений.

Показательные уравнения, содержащие параметр

Большинство показательных уравнений с параметрами сводится к показательным уравнениям вида: а f (x) = b φ(х) (*), где а>0, b>0.

Область допустимых значений такого уравнения находится как пересечение областей допустимых значений функций f(x) и φ (х). Для решения уравнения (*) необходимо рассмотреть следующие случаи:

При а=b=1 решением уравнения (*) является область его допустимых значений D.

При а=1, b≠1 решением уравнения (*) служит решение уравнения φ(х)=0 на области допустимых значений D.

При а≠1, b=1 решение уравнения (*) находится как решение уравнения f(х) = 0 на области D.

При а=b (а>0, а≠1, b>0, b≠1) уравнение (*) равносильно уравнению f(х) = φ(х) на области D.

При а≠b (а>0, а≠1, b>0, b≠1) уравнение (*) тождественно уравнению (c>0, c≠1) на области D (см. [1]).

Пример. Решить уравнение: а х + 1 = b 3 – х

Решение. ОДЗ уравнения: х R, а > 0, b >0.

1) При а ≤ 0, b ≤ 0 уравнение не имеет смысла;

2) При а = b = 1, х R;

3) При а = 1, b ≠ 1 имеем: b 3 – х = 1 или 3 – х = 0 х = 3;

4) При а ≠ 1, b = 1 получим: а х + 1 = 1 или х + 1 = 0 х = -1;

5) При а = b (а > 0, а ≠ 1, b >0, b ≠ 1) имеем: х + 1 =3 – х х = 1;

6) При , получим: уравнение , которое не имеет решения;

7) При а ≠ b и (а > 0, а ≠ 1, b >0, b ≠ 1) прологарифмируем исходное уравнение по основанию а, получим:

, х + 1 = (3 – х) log a b , .

Ответ: при а ≤ 0, b ≤ 0 или , уравнение не имеет решений;

при а = b = 1, х R;

при а = 1, b ≠ 1 х = 3;

при а ≠ 1, b = 1 х = -1;

при а = b (а > 0, а ≠ 1, b >0, b ≠ 1) х = 1;

при а ≠ b (а > 0, а ≠ 1, b >0, b ≠ 1) .

Логарифмические уравнения, содержащие параметр

Решение логарифмических уравнений с параметрами сводится к нахождению корней элементарного логарифмического уравнения. Важным моментом решения уравнений такого типа является проверка принадлежности найденных корней ОДЗ исходного уравнения (см. [1]).

Пример. Решить уравнение

2 – log (1 + х) = 3 log а - log (х 2 – 1)2.

К-во Просмотров: 724
Бесплатно скачать Курсовая работа: Методы решения уравнений, содержащих параметр