Курсовая работа: Модель распределения

Обычно для расчётов используют ежемесячные данные за один год или несколько лет. В этом случае интервал между двумя соседними месяцами принимают равным:

Построив модель сезонных колебаний, положим для уточнённого изучения основной тенденции a0 =0. Исключим сезонные колебания из уровней динамического ряда (табл.3.1.1).

Таблица 3.1.1

xt yt
2661,669 3613,236
2875,587 3822,011
2963,355 3982,202
3123,42 4283,029
3220,836 4428,087
3326,98 4610,676
3286,852 4566,172
3263,324 4538,486
3116,237 4319,251
3036,962 4198,99
2900,234 3993,958
2894,491 3990,848
2874,626 3974,423
2997,766 4181,021
3084,173 4339,299
3262,659 4638,991
3338,698 4783,995
3444,038 4907,625
3403,894 4924,979
3381,141 4899,469
3315,414 4682,148
3157,719 4563,026
3022,368 4358,052
3017,432 4353,904
2997,586 4365,623

2. Определение основной тенденции развития

Для выявления основной тенденции развития применяют аналитическое выравнивание. В результате выравнивания получают зависимость изучаемого показателя от времени, т.е. трендовую модель. Используем линейную трендовую модель:


Наиболее тщательно выбирают модель для целей экстраполяции значений показателя. Значение х и у выбираем из табл.6 приложения.

Коэффициенты уравнения определяем методом наименьших квадратов. В нашем случае система уравнений относительно коэффициентов a0 и a1 имеет вид:


и коэффициенты a0 и a1 равны:

Для признака x:


Для признака y:


3. Изучение корреляционной зависимости между уровнями двух динамических рядов

Продолжаем рассмотрение двух выбранных нами рядов динамики. При исследовании тесноты связи между их уровнями на первое место выступает анализ смысла связи между рядами и установление факторного и результативного признаков. Без такого анализа значение коэффициента корреляции может выражать только случайное сопутствие в изменении уровней двух рядов.

Применение традиционных приемов изучения корреляции к динамическим рядам сопряжено со следующими особенностями:

1. В социально-экономических рядах динамики имеет место тенденция, вызванная действием постоянных факторов: последующие уровни рядов динамики зависят от последующих, т.е. имеется автокорреляция и авторегрессия. Это говорит о том, что нарушена одна из предпосылок применения теории корреляции - независимость отдельных наблюдений друг от друга. Если автокорреляцией при этом пренебречь, то полученная зависимость будет отражать взаимосвязь, которой в действительности не существует, или искажать реально существующую взаимосвязь.

2. Второй особенностью изучения корреляции динамических рядов является наличие временного лага, т.е. сдвига по времени изменения уровней одного ряда по отношению к изменению уровней другого ряда. Если сдвинуть уровни одного ряда относительно другого и убрать временной лаг, то получим верную оценку тесноты корреляционной связи уровней двух динамических рядов.

3. Третьей особенностью является изменение тесноты корреляционной связи уровней динамических рядов со временем.

Вначале устраняем временной лаг, значение которого определяем графически или подбором; с расчетом коэффициента корреляции.

Затем приступаем к исследованию взаимосвязи уровней. Существует четыре направления изучения корреляционной зависимости между уровнями двух динамических рядов:

- коррелирование уровней;

- коррелированно разностей;

- коррелирование остатков (отклонений от трендов);

- коррелирование с учетом фактора времени.

3.1. Изучение корреляционной зависимости между уровнями двух динамических рядов методом коррелирования уровней

Нам следует построить уравнение авторегрессии для каждого из изучаемых динамических рядов, проверив наличие временного лага:


где L – величина временного лага (L=1).


Для динамического ряда xi :


Для динамического ряда yi :


Т.к. полученные коэффициенты корреляции больше табличного, то переходим к следующему методу.

3.2. Изучение корреляционной зависимости между уровнями двух динамических рядов методом коррелирования разностей

По первоначальным динамическим рядам xi , yi с количеством членов n строим новые динамические ряды ui , wi с количеством членов n-1(табл.3.2.1), где:


Таблица 3.2.1

ui wi
640 224
336 -164
164 -276
-144 -530
-316 -410
-530 -396
-450 -44
-396 104
-84 456
104 470
416 590
470 336
550 224
336 -164
184 -276
-164 -530
-316 -470
-530 -336
-450 -44
-316 104
-164 456
104 470
416 590
470 366

К-во Просмотров: 703
Бесплатно скачать Курсовая работа: Модель распределения