Курсовая работа: Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое
С учетом того, что дифференцирование по - это умножение на , перепишем наши формулы:
и
Подставим полученные выражения в граничные условия (2.6). В результате получим систему линейных алгебраических уравнений для коэффициентов :
Разрешая для каждого n полученную систему одним из численных методов и подставляя полученные коэффициенты в потенциалы, найдем волновое поле, в том числе и в бесконечности.
Проведя вычисления для достаточно большого числа n, получаем возможность анализировать волновые поля вне и внутри оболочки по разложениям (2.2), (2.4), (2.5). В частности можно оценить поведение рассеянного поля в дальней зоне. Пользуясь асимптотическим представлением функций Ханкеля при больших значениях аргумента, для потенциала рассеянной продольной волны при получим:
или
Опуская первый множитель, характеризующий распространение ненаправленной цилиндрической волны, и учитывая, что амплитуда падающей волны – единичная, получим выражение для нормированной амплитуды рассеянной волны:
(2.8)
Это выражение определяет диаграмму направленности рассеянного поля по амплитуде.
3. ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ И АНАЛИЗ РЕЗУЛЬТАТОВ
3.1 Расчетные данные
Расчет будем проводить с материалами, модули упругости и плотность которых представлены в следующей таблице:
Таблица 1. Модули упругости и плотность материалов.
Материал И его тип | |||
Изотропный (алюминий) | 5.3 | 2.6 | 2.7 |
Изотропный (сталь) | 11.2 | 8.1 | 7.7 |
Мы будем рассматривать алюминиевый цилиндрический слой, помещенный в упругое однородное изотропное пространство (сталь). Необходимые данные будут взяты из таблицы 1. Расчеты будем проводить при значениях радиусов: , , и при следующих частотах: =2.0, =3.0, = 4.0 (соответственно при количестве членов в ряде N=7.0, N=9.0, N=11.0).
3.2 Численная реализация
Алгоритм численного расчета реализован в виде программы kurs_ira.cpp на IBM – совместимых компьютерах на языке C++ в среде Borland версии 3.1. В качестве метода решения системы линейных алгебраических уравнений применялся метод Гаусса с выбором главного элемента. Листинг программы представлен в ПРИЛОЖЕНИИ 1. В качестве начальных данных в программе задаются плотности и модули упругости для различных сред, значения радиусов, номер задачи. В качестве результатов были получены диаграммы направленности рассеянного поля по амплитуде, представленные в ПРИЛОЖЕНИИ 2.
ЗАКЛЮЧЕНИЕ
В результате проделанной работы проделано следующее:
1. Приведены волновые уравнения в изотропных однородных средах.
2. Для однородной изотропной среды теоретически было показано разделение волны на продольную и поперечную части и приведены формулы для граничных условий.
3. Поставлена и решена задача о прохождении плоской упругой продольной волны через упругий однородный изотропный цилиндрический слой и приведены диаграммы направленности рассеяния продольной волны по амплитуде. Листинг программы представлен в ПРИЛОЖЕНИИ 1. Расчетные данные взяты из таблицы 1.
4. В качестве численного метода решения системы линейных алгебраических уравнений использован метод Гаусса с выбором главного элемента.
5. В качестве результатов были получены графики диаграмм рассеянного поля продольной волны по амплитуде в ПРИЛОЖЕНИИ 2.
Эти результаты могут широко использоваться как в самой теории упругости, так и в ее приложениях в области дефектоскопии, геофизики, методах идентификации материалов.
ЛИТЕРАТУРА
1. Амензаде Ю.А. Теория упругости.- М.: Высшая школа, 1976, 272с.
2. Бреховских Л.М. Волны в слоистых средах.-М.: Изд-во АН СССР, 1957, 520c.
3. Гузь А.Н., Головчан В.Т. Дифракция упругих волн в многосвязных телах. – Киев, Наукова думка, 1972, 256с.
4. Исраилов М.Ш. Динамическая теория упругости и дифракции волн - М.: Изд-во МГУ, 1922, 205c.
5. Ландау Л.Д., Лившиц Е.М. Теория упругости.- М.: Наука, 1987, 248c.
6. Лехницкий С.Г. Теория упругости анизотропного тела.– М.:Наука,1977, 415с.