Курсовая работа: Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое

С учетом того, что дифференцирование по - это умножение на , перепишем наши формулы:


и

Подставим полученные выражения в граничные условия (2.6). В результате получим систему линейных алгебраических уравнений для коэффициентов :

Разрешая для каждого n полученную систему одним из численных методов и подставляя полученные коэффициенты в потенциалы, найдем волновое поле, в том числе и в бесконечности.

Проведя вычисления для достаточно большого числа n, получаем возможность анализировать волновые поля вне и внутри оболочки по разложениям (2.2), (2.4), (2.5). В частности можно оценить поведение рассеянного поля в дальней зоне. Пользуясь асимптотическим представлением функций Ханкеля при больших значениях аргумента, для потенциала рассеянной продольной волны при получим:

или

Опуская первый множитель, характеризующий распространение ненаправленной цилиндрической волны, и учитывая, что амплитуда падающей волны – единичная, получим выражение для нормированной амплитуды рассеянной волны:

(2.8)

Это выражение определяет диаграмму направленности рассеянного поля по амплитуде.


3. ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ И АНАЛИЗ РЕЗУЛЬТАТОВ

3.1 Расчетные данные

Расчет будем проводить с материалами, модули упругости и плотность которых представлены в следующей таблице:

Таблица 1. Модули упругости и плотность материалов.

Материал И его тип
Изотропный (алюминий) 5.3 2.6 2.7
Изотропный (сталь) 11.2 8.1 7.7

Мы будем рассматривать алюминиевый цилиндрический слой, помещенный в упругое однородное изотропное пространство (сталь). Необходимые данные будут взяты из таблицы 1. Расчеты будем проводить при значениях радиусов: , , и при следующих частотах: =2.0, =3.0, = 4.0 (соответственно при количестве членов в ряде N=7.0, N=9.0, N=11.0).

3.2 Численная реализация

Алгоритм численного расчета реализован в виде программы kurs_ira.cpp на IBM – совместимых компьютерах на языке C++ в среде Borland версии 3.1. В качестве метода решения системы линейных алгебраических уравнений применялся метод Гаусса с выбором главного элемента. Листинг программы представлен в ПРИЛОЖЕНИИ 1. В качестве начальных данных в программе задаются плотности и модули упругости для различных сред, значения радиусов, номер задачи. В качестве результатов были получены диаграммы направленности рассеянного поля по амплитуде, представленные в ПРИЛОЖЕНИИ 2.


ЗАКЛЮЧЕНИЕ

В результате проделанной работы проделано следующее:

1. Приведены волновые уравнения в изотропных однородных средах.

2. Для однородной изотропной среды теоретически было показано разделение волны на продольную и поперечную части и приведены формулы для граничных условий.

3. Поставлена и решена задача о прохождении плоской упругой продольной волны через упругий однородный изотропный цилиндрический слой и приведены диаграммы направленности рассеяния продольной волны по амплитуде. Листинг программы представлен в ПРИЛОЖЕНИИ 1. Расчетные данные взяты из таблицы 1.

4. В качестве численного метода решения системы линейных алгебраических уравнений использован метод Гаусса с выбором главного элемента.

5. В качестве результатов были получены графики диаграмм рассеянного поля продольной волны по амплитуде в ПРИЛОЖЕНИИ 2.

Эти результаты могут широко использоваться как в самой теории упругости, так и в ее приложениях в области дефектоскопии, геофизики, методах идентификации материалов.


ЛИТЕРАТУРА

1. Амензаде Ю.А. Теория упругости.- М.: Высшая школа, 1976, 272с.

2. Бреховских Л.М. Волны в слоистых средах.-М.: Изд-во АН СССР, 1957, 520c.

3. Гузь А.Н., Головчан В.Т. Дифракция упругих волн в многосвязных телах. – Киев, Наукова думка, 1972, 256с.

4. Исраилов М.Ш. Динамическая теория упругости и дифракции волн - М.: Изд-во МГУ, 1922, 205c.

5. Ландау Л.Д., Лившиц Е.М. Теория упругости.- М.: Наука, 1987, 248c.

6. Лехницкий С.Г. Теория упругости анизотропного тела.– М.:Наука,1977, 415с.

К-во Просмотров: 479
Бесплатно скачать Курсовая работа: Моделирование рассеяния плоской упругой продольной волны на упругом однородном изотропном цилиндрическом слое