Курсовая работа: Мономиальные динамические системы
Лемма 1.2.1.
- коммутативная диаграмма.
Доказательство.
Это прямо доказывается тем что supp ( f ( u ))= f ( supp ( u )) .
Так как на множестве всех таких, что supp ( u )= u , появляется следующие прямые следствия.
Следствие 1.2.1.
Фазовое пространство – подграф фазового пространства .
Следствие 1.2.2.
Предположим что – система конечных элементов. Если – цикл в фазовом пространстве , тогда для всех .
Пример 1.2.1.
Пусть .
- состоит из всех возможных наборов длины 3 из трёх элементов: 0, 1, 2.
Это наборы:
Используя функцию , определим переходы в фазовом пространстве .
000 - ,
001 - ,
002 - ,
010 - ,
020 - ,
100 - ,
200 - ,
111 - ,
110 - ,
112 - ,
101 - ,
121 - ,
011 - ,