Курсовая работа: Мономиальные динамические системы
Тогда .
Определение 1.2.2.
Обозначим для .
Видно что – линейное преобразование - элемента. Но можно рассматривать его, как линейное преобразование для - элемента, рассматривая как конечное кольцо, которое обозначим – . То есть, имеется линейное преобразование .
Это доказывает следующую лемму.
Лемма 1.2.2.
- коммутативная диаграмма.
Обратим внимание, что вертикальные стрелки – изоморфизмы. Это значит, что они сохраняют фазовое пространство структуры, включая длину конечных циклов. В частности, имеется следующее следствие.
Следствие 1.2.3.
Фазовое пространство изоморфно к подграфу фазового пространства , состоя из всех наборов с базисным вектором .
Пример 1.2.2.
Для мономиальной системы в примере 1.2.1, определим , где
.
Рассчитаем переходы в фазовом пространстве .
000 - ,
001 - ,
010 - ,
011 - ,
100 - ,
101 - ,
110 - ,
111 - .
Фазовое пространство изображено на рисунке 1.2.3.
Рис. 1.2.3. Фазовое пространство .
Теорема 1.2.1.
Пусть – мономиальная динамическая система. Тогда – система конечных элементов тогда, и только тогда, когда и – системы конечных элементов.
Доказательство.
Из следствий 1.2.1 и 1.2.3, если – система конечных элементов, то и тоже системы конечных элементов. Для доказательства от противного, предположим что и – системы конечных элементов, а – нет. Для каждого конечного цикла , любой из двух связанных наборов имеет все координаты ненулевые, или все наборы имеют минимум одну нулевую координату. В первом случае из этого следует, что имеет конечный цикл, той же длины. Следовательно, если имеет конечный цикл длины большей чем , тогда включаются только наборы имеющие минимум одну нулевую координату.