Курсовая работа: Некоторые приложения определенного интеграла в математике

;

отсюда заключаем:

,

что дает:

.

Установив это, замечаем, что предел отношения при бесконечно большом n равен единице; действительно, так как убывает при возрастании n, то мы имеем неравенство:

или:

.

Мы видим, следовательно, что заключается между единицей и дробью , которая также равна единице при бесконечном n.

Установив это, получаем равенство:

,

которое нам дает, если заставим n бесконечно возрастать:

,

и, следовательно:

.

Полагая теперь в интеграле , мы получим следующее новое выражение:

;

заменив затем z на , получаем:

и, следовательно, при бесконечном n

.

Достаточно затем положить , чтобы установить результат, к которому мы стремились:

.

4.3. Вывод формулы Тейлора с остаточным членом в интегральной форме.

Формула интегрирования по частям: ,

а обобщенная формула примет вид:

. (1)

К-во Просмотров: 323
Бесплатно скачать Курсовая работа: Некоторые приложения определенного интеграла в математике