Курсовая работа: Некоторые приложения определенного интеграла в математике
;
отсюда заключаем:
,
что дает:
.
Установив это, замечаем, что предел отношения при бесконечно большом n равен единице; действительно, так как убывает при возрастании n, то мы имеем неравенство:
или:
.
Мы видим, следовательно, что заключается между единицей и дробью , которая также равна единице при бесконечном n.
Установив это, получаем равенство:
,
которое нам дает, если заставим n бесконечно возрастать:
,
и, следовательно:
.
Полагая теперь в интеграле , мы получим следующее новое выражение:
;
заменив затем z на , получаем:
и, следовательно, при бесконечном n
.
Достаточно затем положить , чтобы установить результат, к которому мы стремились:
.
4.3. Вывод формулы Тейлора с остаточным членом в интегральной форме.
Формула интегрирования по частям: ,
а обобщенная формула примет вид:
. (1)