Курсовая работа: Некоторые приложения определенного интеграла в математике
В курсовой работе рассмотрены вопросы некоторого приложения определенного интеграла. Цель: изучить актуальность применения определенного интеграла и широту его использования в математике, оценить ее практическую и теоретическую значимость.
При разработки данного вопроса, был также рассмотрен несобственный интеграл, как частный случай определенного интеграла, его определение и виды.
2. Определенный интеграл.
Пусть функция f(x) задана в некотором промежутке [a,b]. Разобьем этот промежуток произвольным образом на части, вставив между a и b точки деления: . Наибольшую из разностей
(i=0,1,2, …,n-1) будем впредь обозначать через λ.
Возьмем в каждом из частных промежутков по произволу точку
и составим сумму
.
Говорят, что сумма σ при λ→0 имеет (конечный) предел I, если для каждого числа ε>0 найдется такое число δ>0, что, лишь только λ<δ (т.е. основной промежуток разбит на части, с длинами ), неравенство
выполняется при любом выборе чисел .
Записывают это так:
. (1)
Этому определению «на языке ε-δ», как обычно, противопоставляется определение «на языке последовательностей». Представим себе, что промежуток [α,b] последовательно разбивается на части, сначала одним способом, затем – вторым, третьим и т.д. Такую последовательность разбиений промежутка на части мы будем называть основной, если соответствующая последовательность значений сходится к нулю.
Равенство (1) можно понимать теперь и в том смысле, что последовательность значений суммы σ, отвечающая любой основной последовательности разбиений промежутка, всегда стремится к пределу I, как бы ни выбирать при этом .
Второе определение позволяет перенести основные понятия и предложения теории пределов и на этот новый предел.
Конечный предел I суммы σ при λ→0 называется определенным интегралом функции f(x) в промежутке от α до b и обозначается символом
;
в случае существования такого предела функции f(x) называется интегрируемой в промежутке [α,b].
Числа α и b носят название, соответственно, нижнего и верхнего пределов интеграла. При постоянных пределах определенный интеграл представляет собой постоянное число.
3. Несобственные интегралы.
Пусть f непрерывна на луче на луче и F(x) – первообразная для f на луче . Если существует
,
то этот предел обозначается и называется сходящимся несобственным интегралом.
Несобственные интеграл вида и аналогичный интеграл получаются при замене в интеграле Римана с помощью функции t=t(x), непрерывной и дифференцируемой на полуинтервале [a,b) ( или (a,b] ) и являющейся бесконечно большой определенного знака при (или ).
Здесь существенно, что особой точкой функции t является именно конец (левый или правый) отрезка [a,b]. Если особой точкой t(x) (как в разобранном выше примере) является внутренняя точка с интервала (a,b), то разбивается на и , и переход к аргументу t делается раздельно в каждом из слагаемых.
Пример.
Вычислим .
--> ЧИТАТЬ ПОЛНОСТЬЮ <--