Курсовая работа: Некоторые замечательные кривые
5.4 Особенности формы
5.5 Свойства нормали
5.6 Построение касательной
5.7 Задача
Заключение
Используемая литература
Введение
В данной работе мы рассмотрим некоторые замечательные кривые и их особенности.
В параграфе 1 будет рассмотрена строфоида, особенности её формы, стереометрическое образование и исторические сведения.
Во 2-м параграфе мы изучим циссоиду Диокла и некоторые формулы, связанные с ней.
В параграфе 3 узнаем метод построения, особенности формы и исторические сведения о кривой, называемой «Декартов лист».
В 4-м параграфе рассмотрим улитку Паскаля. Её определение, построение, особенности формы, свойства нормали и построение касательной. плоский кривой лемниската бернули строфоида
В параграфе 5 будет изучена лемниската Бернулли: определение, построение, исторические сведения, особенности формы, свойства нормали и построение касательной.
А также при помощи задач узнаем формулы кривых в прямоугольной декартовой и полярной системах координат.
1. Строфоида
1.1 Определение.
Прямая строфоида , или просто строфоида , определяется так: берём взаимно-перпендикулярные прямые AB, CD (рис.1) и на одной из них точку A; через неё проводим произвольую прямую AL, пересекающую CD в точке P. На AL откладываем отрезки PM1, , PM2 равные PO (O – точка пересечения AB и CD). Строфоида (прямая) есть геометрическое место точек M1 ,M2 .
Косая строфоида (рис.2) строится аналогично с той разницей, что AB и CD пересекаются косоугольно.
1.2 История вопроса
Строфоида была рассмотрена (вероятно, впервые) Ж. Робервалем в 1645 г. под именем птероиды. Нынешнее название введено Миди в 1849 г.
1.3 Стереометрическое образование
Представим себе цилиндрическую поверхность с осью CD (см. рис.1) и радиусом AO. Через точку A проведем перпендикулярную плоскости чертежа произвольную плоскость K (прямая AL – след этой плоскости). В сечении получим эллипс; его фокусы M1 , M2 описывают прямую строфоиду.
Косая строфоида строится аналогично с той лишь разницей, что цилиндрическая поверхность заменяется конической: ось конуса (OS на рис.2) проходит через O перпендикулярно AB; прямая UV, проходящая через B параллельно CD, – одна из образующих. Точки M1 , M2 – фокусы соответствующего конического сечения; косая строфоида расположена на обеих полостях конической поверхности и проходит через вершину S последней.
1.4 Особенности формы
Точка O – узловая; касательные к ветвям, проходящим через O, взаимно перпендикулярны (как для прямой, так и для косой строфоиды). Для косой строфоиды (рис.2) прямая UV служит асимптотой (при бесконечном удалении вниз). Кроме того, UV касается косой строфоиды в точке S, равноотстоящей от A и B.
У прямой строфоиды точка касания S «уходит в бесконечность» (при удалении вверх), так что прямая UV (см. рис.1) служит асимптотой для обеих ветвей.
1.5 Задача
Написать уравнение строфоиды в прямоугольной декартовой системе координат, осями которой являются прямые AB и CD, а направление оси OX определяется направлением оси строфоиды.