Курсовая работа: Обеспечение всеобщей компьютерной грамотности
Рассмотрим следующий пример:
Задание 6. Построить треугольник с заданными сторонами а, b, с, если а =2, b=3, с =4.
Для выполнения задания будем использовать алгоритм трг, в таком случае требуемый алгоритм может иметь следующий вид:
Алгоритм 6. ал г тр1 (рац а, b, с; тр ∆)
арг а, b, с
рез ∆
нач
1. а=2
2. b=3
3. с=4
4. трг (а, b, с, ∆)
5. стоп
6.кон
Первые три указания задают аргументам алгоритма трг числовые значения. Указание 4 алгоритма тр1 требует применения алгоритма трг, который по заданным значениям длин сторон указывает способ построения искомого треугольника.
Указания 1—3 последнего алгоритма можно опустить, в этом случае искомый алгоритм будет иметь следующие указания:
1. трг (2, 3, 4, ∆)
2. стоп
Алгоритм-функция
Рассмотрим другую форму записи обращения к алгоритму. Рассматриваемое выше указание для построения треугольника по трем заданным сторонам трг (2, 3, 4, ∆) можно записать следующим образом: ∆=трг (2, 3, 4). Указания такого вида будем называть указаниями, имеющими форму функции.
Всякое обращение к известным алгоритмам можно записать в виде указания, имеющего форму функции. В свою очередь всякое указание на построение можно рассматривать как использование алгоритма, обращение к которому имеет форму функции.
Так, например, указание 01=окр (А, р) можно рассматривать как обращение к алгоритму с именем окр и параметрами A и р, являющимися аргументами алгоритма. Результат построения по данному алгоритму обозначается именем 01.
Такой алгоритм может состоять, например, из следующих указаний:
1. Сделать раствор циркуля равным р.
2. Поставить одну ножку циркуля в точку А.
3. Второй ножкой циркуля описать окружность.
4. Закончить действия.
Для указаний приведенного алгоритма можно также ввести сокращения и обозначения, удобные для записи, однако это делать необязательно, так как на практике такого рода указаниями обычно не пользуются.
Методические указания
Для изучения темы «Геометрические построения» в VI классе средней общеобразовательной школы отводится 14 ч.