Курсовая работа: Обработка опытных данных методом МНК

Содержание

1 Постановка задачи и исходные данные. 2

2 .Аппроксимация функций. 2

3. Подбор эмпирических формул. 2

3.1. Степенная зависимость (геометрическая регрессия). 2

3.2. Показательная зависимость. 2

3.3. Логарифмическая функция. 2

4. Метод наименьших квадратов. 2

5. БЛОК-СХЕМА для МНК.. 2

6 .Решение задачи в MathCAD.. 2

Подбор эмпирической формулы.. Ошибка! Закладка не определена.

Расчет. Ошибка! Закладка не определена.

7. Вывод. 2

8. Список литературы.. 2


Введение

1 Постановка задачи и исходные данные

Имеются экспериментальные данные в виде таблицы:

xi 6,04 6,33 4,86 5,91 4,96 5,58 6,15 6,13 4,65 5,49
yi 79,31 57,43 60,66 92,55 90,12 71,30 70,50 91,52 54,9 58,56

Необходимо обработать опытные данные путем нахождения аппроксимирующих зависимостей. Для расчета параметров аппроксимирующей функции применять метод наименьших квадратов

2 .Аппроксимация функций

Пусть величина y является функцией аргумента x. Это означает, что любому значению x из области определения поставлено в соответствие значение y. Вместе с тем на практике часто неизвестна связь между y и x, т.е. невозможно записать эту связь в виде некоторой зависимости y=f(x). В некоторых случаях даже при известной зависимости y=f(x) она настолько громоздка, что ее использование в практических расчетах затруднительно.

Этой цели и служит задача о приближении (аппроксимации) функций: данную функцию f(x) требуется приближенно заменить (аппроксимировать) некоторой функцией φ(х), так чтобы отклонение φ(х) от f(x) в заданной области было наименьшим. Функция φ(х) при этом называется аппроксимирующей.

Мерой отклонения φ(х) от заданной функции f(x) на множестве точек (хi , yi ) (i=0,1,…,n) при среднеквадратическом приближении является величина S, равная сумме квадратов разностей между значениями многочлена и функции в данных точках:

(1)

Надо подобрать такую функцию φ(х), чтобы величина S была наименьшей. В этом и состоит метод наименьших квадратов.

3. Подбор эмпирических формул

Пусть, изучая неизвестную функциональную зависимость между у и х, мы в результате серии экспериментов произвели ряд измерений этих величин и получили таблицу значений

Х0 Х1 Хn
Y0 Y1 Yn

Задача состоит в том, чтобы найти приближенную зависимость

y=f(x), (2)

значения которой при х= хi (i=0,1,…,n) мало отличается от опытных данных yi . Приближенная функциональная зависимость (2), полученная на основании экспериментальных данных, называется эмпирической формулой.

Задача построения эмпирической формулы отличается от задачи интерполирования. График эмпирической зависимости не проходит через заданные точки (хi , yi ), как в случае интерполяции.

Простейшей эмпирической формулой является линейная зависимость

Y=ax+b

Другой простейшей эмпирической формулой является квадратный трехчлен –парабола или кубическая парабола.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 379
Бесплатно скачать Курсовая работа: Обработка опытных данных методом МНК