Курсовая работа: Общие свойства конечных групп с условием плотности для F субнормальных подгрупп
--- множество всех различных простых делителей натурального числа ;
--группа --- группа , для которой ;
--группа --- группа , для которой ;
--- подгруппа Фраттини группы , т.е. пересечение всех максимальных подгрупп группы ;
--- подгруппа Фиттинга группы , т.е. произведение всех нормальных нильпотентных подгрупп группы ;
--- коммутант группы ;
--- --холловская подгруппа группы ;
--- силовская --подгруппа группы ;
--- дополнение к силовской --подгруппе в группе , т.е. --холловская подгруппа группы ;
--- группа всех автоморфизмов группы ;
--- является подгруппой группы ;
нетривиальная подгруппа --- неединичная собственная подгруппа;
--- является нормальной подгруппой группы ;
--- подгруппа характеристична в группе , т.е. для любого автоморфизма ;
--- индекс подгруппы в группе ;
;
--- централизатор подгруппы в группе ;
--- нормализатор подгруппы в группе ;
--- центр группы ;
--- циклическая группа порядка ;
Если и --- подгруппы группы , то:
--- прямое произведение подгрупп и ;
--- полупрямое произведение нормальной подгруппы и подгруппы .
Группа называется:
примарной, если ;
бипримарной, если .
Скобки применяются для обозначения подгрупп, порождённых некоторым множеством элементов или подгрупп.
--- подгруппа, порожденная всеми , для которых выполняется .
Группу называют --нильпотентной, если .