Курсовая работа: Определение термодинамических активностей компонентов бронзы БрБ2
3) Примеси кислорода и серы, образующие с медью хрупкие химические соединения Сu2 О и Cu2 S, входящие в состав эвтектики. Кислород, находясь в растворе, уменьшает электропроводимость, а сера не влияет на нее. Сера улучшает обрабатываемость меди резанием, а кислород, если он присутствует в меди, образует закись меди и вызывает «водородную болезнь».
При нагреве меди в атмосфере, содержащей водород, происходит его диффузия вглубь меди. Если в меди присутствуют включения Сu2 О, то они реагируют с водородом, в результате чего образуются пары воды по реакции
Сu2 О + Н2 → 2Сu + Н2 О,
протекающей с увеличением объема. Это создает в отдельных участках металла высокое давление и вызывает появление микротрещин, которые могут привести к разрушению детали.
Медь хорошо сопротивляется коррозии в обычных атмосферных условиях, в пресной и морской воде и других агрессивных средах, но обладает плохой устойчивостью в сернистых газах и аммиаке.
Механические свойства меди в литом состоянии таковы:
;
в горячедеформированном состоянии:
.
При холодном деформировании предел прочности может быть повышен до 450 МПа (проволока) при снижении относительного удлинения до 3%. Модуль нормальной упругости меди равен 115 000 МПа.
Медь легко обрабатывается давлением, но плохо резанием, и имеет невысокие литейные свойства из-за большой усадки. Медь плохо сваривается, но легко подвергается пайке. Ее применяют в виде листов, прутков, труб и проволоки.
В электротехнической промышленности, электронике и электровакуумной технике применяют бескислородную М0б (0,001% О2 ) и раскисленную М1р (0,01% О2 ) медь.
Различают две основные группы медных сплавов:
1) Латуни — сплавы меди с цинком;
2) Бронзы — сплавы меди с другими элементами, в числе которых, но только наряду с другими, может быть и цинк. Медные сплавы обладают высокими механическими и техническими свойствами, хорошо сопротивляются износу и коррозии. Принята следующая маркировка медных сплавов. Сплавы обозначают буквами «Л» (латунь) или «Бр» (бронза), после чего следуют буквы основных элементов, образующих сплав. Например, О — олово, Ц — цинк, Мц — марганец, Ж — железо, Ф — фосфор, Б — бериллий, X — хром и т. д. Цифры, следующие за буквами, указывают количество легирующего элемента. ,
Порядок цифр для бронз и латуней различен. В марках деформируемых латуней первые две цифры после буквы «Л» указывают среднее содержание меди в процентах. Например, Л70 — латунь, содержащая 70% Си. В случае легированных деформируемых латуней указывают еще буквы и цифры, обозначающие название и количество легирующего элемента, например ЛАЖ60-1-1 означает латунь с 60% Сu, легированную алюминием (А) в количестве 1% и железом (Ж) в количестве 1%. Содержание цинка определяется по разности от 100% . В деформированных бронзах содержание основного компонента — меди — не указывается, а определяется по разности. Цифры после букв, отделенные друг от друга через тире, указывают среднее содержание легирующих элементов в процентах; цифры расположены в том же порядке, как и буквы, указывающие присутствие в бронзе того или иного элемента, например, бронза БрОЦ4-3 имеет следующий состав: олова (О) — 4%, цинка (Ц) — 3% . Содержание меди определяется по разности от 100%.
В литейных латунях и бронзах среднее содержание компонентов сплава в процентах ставится сразу после буквы, обозначающей его название. Например, латунь ЛЦ40Мц1,5 содержит 40% цинка (Ц) и 1,5% марганца (Мц). Бронза БрА10ЖЗМц2 содержит алюминия (А) 10%, железа (Ж) — 3% и марганца (Мц) — 2% .
Оловянные бронзы . На рис. 1.1 приведена диаграмма состояния Сu—Sn. Фаза α представляет твердый раствор олова в меди с ГЦК-решегкой. В сплавах этой системы образуются электронные соединения: β-фаза (), δ-фаза (), ε-фаза (), а также γ-фаза — твердый раствор на базе химического соединения, природа которого не установлена. Система Сu—Sn имеет ряд перитектических превращений и два превращения эвтектоидного типа. При температуре 588°С кристаллы β-фазы претерпевают эвтектоидный распад с образованием α- и γ-фаз, а при 520°С кристаллы твёрдого раствора γ распадаются на фазы α и δ. При температуре 350°С δ-фаза распадается на α-твердый раствор и ε-фазу. Однако это превращение протекает только при очень медленном охлаждении. В реальных условиях охлаждения бронза состоит из α и δ фаз. В практике применяют только сплавы с содержанием до 10 - 12% Sn. Сплавы, более богатые оловом, очень хрупки. Оловянные бронзы при ускоренном охлаждении имеют резко выраженное дендритное строение.
Рис. 1.1 Диаграмма состояния Cu-Sn
Бронзы, содержащие до 4-5% Sn, после деформации и отжига получают полиэдрическое строение и представляют собой в основном α-твердый раствор. После литья даже такие низколегированные бронзы в результате сильной ликвации могут иметь включения эвтектоида (α+δ).
При большем содержании олова в структуре бронз в равновесном состоянии с α-раствором присутствует эвтектоид (α+δ). Зависимость механических свойств литых бронз от содержания олова показана на рис. 1.2. Предел прочности возрастает с увеличением содержания олова. При высокой концентрации олова вследствие присутствия в структуре значительного количества эвтектоида, содержащего хрупкое соединение , предел прочности резко снижается.
Относительное удлинение несколько возрастает при содержании в бронзе 4-6% Sn, но при образовании эвтектоида сильно уменьшается. Оловянные бронзы обычно легируют Zn, Fe, P, Pb, Ni и другими элементами. Цинк улучшает технологические свойства бронзы и удешевляет её. Фосфор улучшает литейные свойства. Никель повышает механические свойства, коррозионную стойкость и плотность отливок и уменьшает ликвацию. Железо измельчает зерно, но ухудшает технологические свойства бронз и сопротивляемость коррозии. Легирование свинцом снижает механические свойства бронзы, но повышает плотность отливок, а главное — облегчает обработку резанием и улучшает антифрикционные свойства.
Рис. 1.2 Влияние олова на механические свойства бронз
Табл. 1.1 Механические свойства и назначение деформируемых и литейных оловянных бронз
Бронза | δ, % | Назначение | |
Деформируемые бронзы (ГОСТ 5017-74) | |||
БрОФ6,5-0,4 | 400(750) | 65(10) | Пружины, барометрические коробки, мембраны, антифрикционные детали |
БрОЦ4-3 | 330(550) | 40(4) | Плоские и круглые пружины |
БрОЦС4-4-2,5 | 350(650) | 35(2) | Антифрикционные детали |
Литейные бронзы (ГОСТ 613-79) | |||
БрО3Ц12С5 | 200(170) | 5(8) | Арматура общего назначения |
БрО5ЦНС5 | 175(150) | 4(6) | Антифрикционные детали, вкладыши подшипников, арматура |
БрО4Ц4С17 | 150(150) | 12(5) | Втулки, подшипники, вкладыши, червячные шары и т.п. |
Различают деформируемые и литейные оловянные бронзы (табл. 1.1).
В таблице для деформируемых бронз в скобках приведены свойства после холодной прокатки (наклёпа), а без скобок – свойства после отжига. Для литейных же бронз в скобках указаны свойства при литье в песчаную форму, а без скобок – свойства при литье в кокиль. Деформируемые бронзы изготовляют в виде прутков, лент и проволоки в нагартованном (твердом) и отожженном (мягком) состояниях. Эти бронзы чаще предназначаются для изготовления пружин и пружинных деталей, применяемых в различных отраслях промышленности. Структура деформированных оловянных бронз — это α-твердый раствор. Литейные бронзы, содержащие большое количество цинка, фосфора и нередко свинца, имеют двухфазную структуру: α-твердый раствор и твердые хрупкие включения δ-фазы, входящие обычно в структуру эвтектоида.
Оловянные бронзы обладают хорошими литейными свойствами и применяются для литья деталей сложной формы. Недостатком отливок из оловянных бронз является большая микропористость. Бронзы, особенно двухфазные, обладают высокими антифрикционными свойствами. В связи с этим их часто применяют для изготовления антифрикционных деталей.