Курсовая работа: Определение законов распределения и числовых характеристик случайной величины на основе опытных данных

Рисунок 4.

Точечные и интервальные оценки параметров распределения

Точечные оценки числовых характеристик случайной величины

Пусть изучается случайная величина Х с математическим ожиданием и дисперсией, оба параметра неизвестны.

Пусть х1, х2, х3, …, хn– выборка, полученная в результате проведения nнезависимых наблюдений случайной величины Х. Чтобы подчеркнуть случайный характер величин х1, х2, х3, …, хnперепишем их в виде:

Х1, Х2, Х3, …, Хn, где Хi– значение случайной величины Х в i-ом опыте.

Требуется на основании этих опытных данных оценить математическое ожидание и дисперсию случайной величины. Такие оценки называются точечными, в качестве оценки mи Dможно принять статистическое математическое ожидание и статистическую дисперсию , где

,


До проведения опыта выборка Х1, Х2, Х3, …, Хnесть совокупность независимых случайных величин, которые имеют математическое ожидание и дисперсию, а значит распределение вероятности такие же как и сама случайная величина Х. Таким образом:

,, где i= 1, 2, 3, …, n.

Исходя из этого, найдем математическое ожидание и дисперсию случайной величины (пользуясь свойствами математического ожидания).

Таким образом математическое ожидание статистического среднего равно точному значению математического ожидания mизмеряемой величины, а дисперсия статистического среднего в nраз меньше дисперсии отдельных результатов измерений.

при

Это значит, что при большом объеме выборки Nстатистическое средние является величиной почти неслучайной, оно лишь незначительно отклоняется от точного значения случайной величины m. Этот закон называется законом больших чисел Чебышева.


Точность статистической оценки. Доверительная вероятность (надежность оценки), доверительный интервал

Точечные оценки неизвестных значений математического ожидания и дисперсии имеют большое значение на первоначальном этапе обработки статических данных. Их недостаток в том, что неизвестно с кокой точностью они дают оцениваемый параметр.

Пусть по данной выборке Х1, Х2, Х3, …, Хnполучены точные статистические оценки и, тогда числовые характеристики случайной величины Х будут приближенно равны . Для выборки небольшого объема вопрос поточности оценки существенен, т.к между mи, Dи будут недостаточно большие отклонения. Кроме того при решении практических задач требуется не только найти приближенные значения mи D, но и оценить их точность и надежность. Пусть ,т.е является точечной оценкой для m. Очевидно, чтотем точнее определяет m, чем меньше модуль разности . Пусть , где ε>0, тогда, чем меньше ε, тем точнее оценка m. Таким образом, ε>0 характеризует точность оценки параметра. Однако статистические методы не позволяют категорически утверждать, что оценка истинного значения mудовлетворяет, можно лишь говорить о вероятности α, с которой это неравенство выполняется:

Таким образом, α- это доверительная вероятность или надежность оценки , значение α выбираются заранее в зависимости от решаемой задачи. Надежность α принято выбирать 0.9; 0.95; 0.99; 0.999. События с такой вероятностью являются практически достоверными. По заданной доверительной вероятности можно найти число ε>0 из .

Тогда получим интервал,который накрывает с вероятностью α истинное значение математического ожидания m, длина этого интервала равна 2ε. Этот интервал называется доверительным интервалом . А такой способ оценки неизвестного параметра m– интервальным .

Доверительный интервал для математического ожидания нормального распределения случайной величины при известном σ.

Пусть дана выборка Х1, Х2, Х3, …, Хn, и пусть по этой выборке найдено ,,.

Требуется найти доверительный интервал для математического ожидания mс доверительной вероятностью α. Величина есть величина случайная с математическим ожиданием,.

Случайная величина имеет суммарную природу, при большом объеме выборки она распределена по закону близкому к нормальному. Тогда вероятность попадания случайной величины в интервал будет равна:

,где

Где- функция Лапласа.

Из формулы (3) и таблиц функции Лапласа находим число ε>0 и записываем доверительный интервал для точного значения случайной величины Х с надежностью α.

К-во Просмотров: 364
Бесплатно скачать Курсовая работа: Определение законов распределения и числовых характеристик случайной величины на основе опытных данных