Курсовая работа: Основные межвидовые взаимодействия, эволюция
Московский Государственный
Институт Электронной Техники
(Технический Университет)
Курсовая работа
По курсу "Математическое моделирование"
По теме:
"Основные межвидовые взаимодействия, эволюция"
Выполнила:
Азанова И.В.
гр.МП-30
Проверил:
Лисовец Ю.П.
Москва 2007
Основные межвидовые взаимодействия
Модели отдельной популяции, могут достаточно точно описывать динамику популяции и в случае её взаимодействия с другими популяциями. Для этого в уравнение включаются соответствующие члены, выражающие влияние на численность данной популяции со стороны тех или иных видов.
В настоящее время для классификации возможных взаимодействий в экосистемах предлагается следующая формальная процедура: каждой паре видов сопоставляется три символа: либо "плюс", либо "нуль", либо "минусом" (когда изменение численности одного вида вызывает обратное изменение численности другого). Эти категории биотических взаимодействий приведены в таблице:
Тип | Влияние | ||
№ | взаимодействия | Первого вида на второй | Второго вида на первый |
1 | нейтрализм | 0 | 0 |
2 | аменсализм | – | 0 |
3 | комменсализм | + | 0 |
4 | конкуренция | – | – |
5 | Хищник–жертва | + | – |
6 | Мутуализ (симбиоз) | + | + |
Рассмотрим, как же ведут себя численности популяций при каждом из этих взаимодействий. Моделирование в Matlab. Модель отдельной популяции: Наиболее простым описанием динамики отдельно взятой популяции может служить так называемая логистическая модель, предложенная П. Ферхлюстом в позапрошлом веке для описания динамики человеческого населения и Р. Пёрлом уже в 20-ые годы прошлого столетия применительно к биологическим сообществам. Согласно ей, динамика численности популяции N описывается обыкновенным дифференциальным уравнением:
,
популяция экосистема моделирование дифференциальный
где a=const представляет собой максимальную удельную скорость роста популяции, коэффициент b=const описывает внутривидовую конкурентную борьбу. Коэффициент a представляет собой разность между естественным приростом С и смертностью D в популяции: a=С–D.
Содержимое functhion.m:
function dN=func(t,N)
global alfa beta;
dN=alfa*N-beta*N^2;
Содержимое work.m:
global beta alfa;
N0=100;
figure
hold on;
xlabel('Время')
ylabel('Численность')
beta=0.025;
alfa=2.5;
Nrav=alfa/beta;
--> ЧИТАТЬ ПОЛНОСТЬЮ <--