Курсовая работа: Овалы Кассини и пузыри в моделировании мягких оболочек

Продольная ось деформированной сферы равна диаметру центрального сечения и является величиной постоянной. Значение размеров продольной и поперечной осей совпадают с установленными в уравнениях (36) и (40).

Классическим примером двух и трехосной конфигурации формы деформированной мягкой оболочки является наполнение ее воздухом при внешнем воздействии сжимающей нагрузки сыпучей средой или жидкостью.

На рис. 27 представлены формы кранцев, погруженных в воду, в процессе из заполнения водой в свободном плавании и опертых на жесткое основание.

Таким образом, меридианы деформированной сферы по сути являются овалами, описываемыми уравнением (32) , а по содержанию – "мягкими" окружностями, отслеживающими поверхность равного напряжения потенциального поля давления, деформированными распределенной сжимающей нагрузкой и напряженные внутренним напором рабочей среды.

Рис. 25. Кривые Кассини в прямоугольных координатах.

Рис. 26. Кривые Кассини в полярных координатах.

Рис.27. Схема двух и трехосной конфигурации формы деформированных пневматических кранцев: наверху опертых на жесткое основание (двухстороннее сжатие) и внизу погруженных в воду (объемное сжатие)

2. Влияния геометрических параметров мягкой оболочки на конфигурацию силовых линий напряженности сжатой рабочей среды.

Отмечено, что напряженность деформированного силового поля сжатой рабочей среды (газа) равна векторной сумме напряженностей каждого из взаимодействующих точечных зарядов (частиц), что графически изображается силовыми линиями равного напряжения.

Авторами установлена закономерность построения и конфигурации силовых линий электростатического силового поля, представляющих геометрическое место точек, для которых произведение удаления от этих точек до концов межфокусного расстояния равно квадрату данного отрезка, аналогичных семейству овалов Кассини (Рис.23,а) / 2 /.

Для плоских задач декартовой системы координат овалы Кассини представлены уравнением четвертого порядка с постоянной величиной межфокусного расстояния (f = const) и переменным соотношением размеров полуосей симметрии:

(x2 + z2)² - 2f² (x² - z²) - (d4 - f4 ) = 0 (30)

где d – расстояние от точки на овале до фокуса, см;

f – межфокусное расстояние, см.

При (0 ≤ d ≤ ∞) конфигурация овалов принимает форму от двух точек на концах межфокусного расстояния, до окружности. Преобразованное из плоского в пространственное уравнение (30) принимает вид:

(x² + y² +z²)² - 2f² (x² +y² - z²) – (d4 – f4 ) = 0. (31)

Установлено, что уравнение (31) может быть преобразовано в так называемое уравнение деформированной сферы, если принять условие переменности межфокусного расстояния в зависимости от соотношения размеров овалов(0 = f £ 2a, 2a = const) (Рис.23,б). Это соответствует условию получения сжатого эллипсоида вращения, как поверхности, образованной равномерным сжатием сферы к ее экватору. Следует отметить, что в зависимости от соотношения констант уравнение (31) принимает вид одной из дифференцируемых поверхностей вращения второго и четвертого порядка (сферы, овалоида, цилиндра, конуса-капли, тороидов) (Рис. 24).

Так, например, одним из предельных состояний нагружения мягкой силовой оболочки (мягкого домкрата) является его начальное рабочее положение, когда работа давления практически полностью компенсируется работой воздействующей нагрузки, распределенной по площади центрального сечения (сферы). При этом собственный объем и высота перемещения груза близка к нулю и ими можно пренебречь; распределенная нагрузка от действия массы груза уравновешена давлением среды по плоскости контакта; боковая поверхность вырождается в линию окружности. То есть условием нагружения являются равенства: (f = R; d = 0; h = z = 0; x = y). После подстановки в уравнение (31) последнее принимает вид поверхности плоского круга:

x² + y² = R².

(32)

Другим предельным состоянием нагружения мягких домкратов является режим, при котором оболочка напряжена только избыточным давлением рабочего уровня без воздействия массы груза, при этом (f стремится к 0). Конечное уравнение при этом принимает вид канонического уравнения сферы:

(x² + y² + z²) = d² отсюда x² + y² + z² = d² . (33)

Таким образом, при определенных условиях нагружения можно получить любую из поверхностей вращения меридиана деформированной сферы и соответствующее им уравнение поверхностей.

В результате проведенных исследований сделаны следующие выводы: проектирование мягких оболочек должно базироваться на четырех основных научных положениях, приведенных в настоящей работе; существует возможность моделирования механизма формообразования мягких оболочек, в том числе в условиях геометрической изменяемости. Установлено, что пузырьковая модель отражает геометрическую, а силовые линии напряженности (овалы Кассини) – физическую модель формообразования мягкой оболочки.

3. Построение меридиан деформированной сферы.

Для построения меридиан деформированной сферы воспользуемся известным графическим способом построения овалов Кассини ( Рис. 27 )

Задавая параметры (f ) и (d ) (см. таблицу) находим положение фокусов, затем проводим из точки, лежащей на пересечении оси абсцисс с начальной окружностью, луч, который пересекает окружность, описанную из начала координат, с радиусом, равным (d ). Если теперь из фокусов описать окружность радиусами, равными отрезкам от точки пересечения оси абсцисс с начальной окружностью до конца радиуса (d), то точка их пересечения будет принадлежать меридиану деформированной сферы. Меняя направление луча, можно построить любое число точек.

Очевидно , поверхности вращения меридиан деформированной сферы по конфигурации подобны поверхностям вращения овалов Кассини . Однако введение определенности в соотношение размеров продольных и поперечных осей вращения позволяет рассматривать семейство этих кривых в качестве модели для определения закономерностей формоизменения расчетной сферы , например условия складкообразования линзообразных оболочек плоского раскроя и т. п.

К-во Просмотров: 482
Бесплатно скачать Курсовая работа: Овалы Кассини и пузыри в моделировании мягких оболочек