Курсовая работа: Овалы Кассини и пузыри в моделировании мягких оболочек

У деформированной оболочки вращения отсутствует определенная геометрическая форма, а значит присутствуют геометрические параметры для расчета поверхности и объема.

Согласно описанию пузырьковой модели, деформированная за пределы этого условия складчатая мягкая оболочка представляет собой поверхность распора плотно упакованных упругих сфер, заключенных между плоскостями опоры и контакта с грузом, диаметр которых равен высоте оболочки. Следовательно, ее боковая поверхность представляет собой полуцилиндрическую поверхность распора, радиус кривизны которой равен половине высоты оболочки, а площадь контакта – суммарной площади граней (центральных сечений) плотно упакованных призм.

Известно, что плоскость, ограниченная замкнутой кривой, равномерно и плотно во все стороны может быть заполнена лишь тремя правильными многоугольниками: шестиугольником, треугольником (как составляющим правильного шестиугольника) и квадратом /20/. У этих многоугольников углы кратны, а сумма углов в стыковочных точках равна 360°. Другие правильные геометрические фигуры, в том числе окружность, при упаковке оставляют зазоры. В табл. 7 даны результаты сравнительного расчета параметров плоских геометрических фигур компактной (плотной) упаковки, приведенных к радиусу окружности, вписанной в полость деформированной мягкой оболочки.

Рис.21. Закономерность формообразования складок деформированных мягких оболочек и кривых гипоциклоид

Табл. 7

Элементы геометрических фигур равной высоты, используемые для плотной упаковки полости деформированной мягкой оболочки (приведенные к радиусу сферы)

Параметры Сфера Призма трех-гранная Призма шести-гранная Куб
Соотношение сторон R a = 3,46 R c = 1,15 R b = 2,0 R
Высота 2,0 R 0,57 a 1,73 c b
Периметр сечения 6,28 R 10,4 R 6,9 R 8,0 R
Площадь сече-ния (централь-ного) 3,14 R2 5,15 R2 3,46 R2 4,0 R2
Поверхность 12,57 R2 20,6 R2 18,8 R2 16,0 R2
Объем 4,18 R3 17,85 R3 6,88 R3 8,0 R3
Площадь сече-ния, приведен-ная к сечению сферы 1,0 1,64 1,1 1,28

Из таблицы видно, что из рассмотренных многогранников пространственное плотное заполнение без просветов наиболее предпочтительно у кубов. Следовательно, исходя из формы реальных мягких оболочек, целесообразно выбирать ту или иную конфигурацию плотной упаковки, которая является подобной форме центрального сечения деформированной оболочки.

Например, для оболочек прямоугольных в плане наиболее плотной является упаковка из вписанных кубов. А у оболочек близких к круглым в плане – из шестигранных призм (сотовая упаковка).

Объемы полостей реальных пневмоконструкций могут быть представлены плотно упакованными упругими сферами. Их моделями являются прямоугольные призмы, длина ребра которых равна высоте деформированной оболочки. Параметры модели плотной упаковки могут быть использованы не только для расчета рабочих характеристик, но и для определения прочностных свойств оболочки под нагрузкой.

Кроме расчета натяжения материала с помощью пузырьковой модели можно определять зоны перенапряжений, зависящие от величины избыточного давления. Эти зоны являются и потенциальными местами разрушения, поэтому должны быть усилены конструктивными способами.

Таким образом, приведение деформированной оболочки к пузырьковой модели, позволяет представить составную форму оболочки в виде ряда равнонапряженных сферических структур, геометрические параметры которых могут быть использованы для расчета работ давления и натяжения при определении силовых параметров пневмоконструкции и номинальной прочности конструкционного материала.

Список литературы

Бронштейн И. Н., Семендяев К. А. Справочник по математике. - М.:Наука, 1980, 976с.

Гегузин Я. Е. Пузыри. Библиотечка «Квант».- М.: Наука, 1985, - Вып. 46. 176с.

Горелик Б. М., Шальнев О. В. Основы проектирования эластомерных домкратов. Тематический обзор. ЦНИИТЭНефтехим., М., 1994, 117с.

Гуревич В. И. Калинин В. С. Формы оболочек вращения, деформирующихся без изгиба при равномерном давлении. Доклады АН СССР, 1981, 256, №5, с. 1085-1088.

Магула В. Э. Судовые эластичные конструкции.-Л.: Судостроение.1978.-268с.

Татевский В. М. Теория физико-механических свойств молекул и веществ. – М. : Изд. МГУ, 1987, 239с.

Шальнев О. В., Горелик Б. М. Проектирование напорных мягких оболочечных конструкций с использованием физических и геометрических аналогий. Производство и использование эластомеров.- М.: ЦНИИТЭНефтехим,1994, - №6, с. 15-22.

Штейнгауз Г. Математический калейдоскоп. – М.: Наука, 1981, 104с.

К-во Просмотров: 479
Бесплатно скачать Курсовая работа: Овалы Кассини и пузыри в моделировании мягких оболочек