Курсовая работа: Побудова споживчої функції. Оцінка параметрів системи економетричних рівнянь
Таблиця 1.4 – Таблиця аналізу дисперсій стосовно даних задачі
Компоненти дисперсії | Число ступенів свободи, | Сума квадратів, | Середнє значення суми квадратів, |
Регресія | 1,00 | 43324,40 | 43324,40 |
Відхилення від регресії | 10,00 | 1813,85 | 181,39 |
Всього | 11,00 | 45138,25 |
, (1.24)
. (1.25)
Таким чином :
, (1.26)
де (1,10) – число ступенів свободи відповідно чисельника і знаменника.
. (1.27)
Висновок: > , 238,85 > 4,96 тобто розходження обґрунтованої та необґрунтованої складових дисперсії носить не випадковий характер і взаємозв’язок між рівнем споживання та рівнем доходу тісний.
Оцінку лінійного коефіцієнту кореляції здійснимо за допомогою формули [1]:
, (1.28)
. (1.29)
Висновок: Високий лінійний коефіцієнт кореляції свідчить про тісний взаємозв’язок між роздрібним товарообігом та рівнем доходу .
Побудуємо довірчі інтервали для та . Побудова довірчого інтервалу для кутового коефіцієнту кореляції здійснюється за формулою:
, (1.30)
де – деяка похибка при оцінці ; – довірчий коефіцієнт при рівні імовірності та ступенях свободи. Знаходиться за таблицями –розподілу Ст’юдента .
Приймається якісна гіпотеза , відповідно до якої . Формула для розрахунку має вигляд [1]:
, (1.31)
(1.32)
; (1.33)
; (1.34)
. (1.35)
Висновок: Результати регресії не відповідають якісній гіпотезі, згідно до якої 0‹β‹1, тому робимо висновок про недостатню точність оцінки b.
Побудова довірчого інтервалу для коефіцієнта здійснюється за формулою [1]:
, (1.36)
де – деяка похибка при оцінюванні а ;
, (1.37)
.(1.38)
; (1.39)
(1.40)