Курсовая работа: Полином Жегалкина
Выполнили:
Проверила:
Шерыхалина Н.М.
Уфа – 2008
Оглавление
Цель работы
Введение
Теоретическая часть
Алгоритм
Блок-схемы
Листинг программы
Тестирование программы
Заключение
Список использованной литературы:
Цель работы
Целью данной работы является изучение булевых функций, разработка алгоритма их представления в виде полинома Жегалкина и написания программы, реализующей этот алгоритм.
Введение
В курсе дискретной математики изучаются функции, область определения которых – дискретное множество. Простейшим (но нетривиальным) таким множеством является множество, состоящее из двух элементов.
Теоретическая часть
Полнота и замкнутость
Определение 1:Система функцийиз P2 (множества всех булевых функций) называется функционально полной, если любая булева функция может быть записана в виде формулы через функции этой системы.
Пример:
1) Само множество ;
2);
3) - не полна.
Теорема 1. Пусть даны две системы функций из
, (I)
. (II)
Известно, что система I полная и каждая функция системы I выражается через функции системы II. Тогда система II является полной.
Доказательство: Пусть . В силу полноты системы I , функцию h можно выразить в виде формулы .
По условию теоремы
--> ЧИТАТЬ ПОЛНОСТЬЮ <--