Курсовая работа: Полином Жегалкина
2) Метод неопределенных коэффициентов
- искомый полином Жегалкина (реализующий функцию ).
Вектор из формулы (1) будем называть вектором коэффициентов полинома .
Нам нужно найти неизвестные коэффициенты .
Поступаем так. Для каждого составим уравнение , где - выражение, получаемое из (1) при . Это дает систему из уравнений с неизвестными, она имеет единственное решение. Решив систему, находим коэффициенты полинома .
3) Метод, базирующийся на преобразовании вектора значения функции
Пусть - вектор значений функции.
Разбиваем вектор на двумерные наборы:
.
Операция T определена следующим образом:
.
Применяем операцию Т к двумерным наборам:
Используя построенные наборы, конструируем четырехмерные наборы, которые получаются в результате применения операции Т к четырехмерным наборам, выделяемым из.
Затем от четырехмерных наборов переходим (аналогично) к восьмимерным и т.д., пока не построим - мерный набор. Он и будет искомым вектором коэффициентов полинома .
Пример:
Пусть вектор значений функций = (0,0,0,1,0,1,1,1)
Полученный вектор является искомым векторов коэффициентов полинома .
Определение 2: Пусть M – некоторое подмножество функций из P2. Замыканием M называется множество всех булевых функций, представимых в виде формул через функции множества M. Обозначается [M].
Замечание. Замыкание инвариантно относительно операций введения и удаления фиктивных переменных.
Примеры.
1) M=P2, [M]=P2.
2) M={1,x1Åx2}, [M] – множество L всех линейных функций вида
, (ciÎ{0,1}).
Свойства замыкания:
1) Если М замкнуто, то [M]=M;
2) [[M]]=[M];