Курсовая работа: Продольное и поперечное обтекание тел вращения

или после подстановки разложения (7)

Переписывая второе равенство в виде


подставим под знак суммы выражение для Pn из основного дифференциального уравнения функций Лежандра (5)

Тогда будем иметь

Интегрируя по m и добавляя необходимую функцию от l, получим окончательное выражение для функции тока

(8)

Уравнение нулевой поверхности тока будет

(9)

Сравнивая его с заданным уравнением профиля тела вращения в эллиптических координатах, можно определить величины коэффициентов Аn , что и решает задачу. Конечно, именно этот пункт и является наиболее сложным с вычислительной стороны.


Имея выражение потенциала скоростей, найдем скорость по формуле (10).

2. Поперечное обтекание тел вращения

Наряду с продольным обтеканием тел вращения представляет интерес и поперечное обтекание, перпендикулярное (Приложение 1, б) к оси симметрии тела. Из сложения этих двух потоков можно получить обтекание тела вращения под любым углом .

В этом случае уже не получается осесимметричного движения. Уравнение Лапласа, определяющее потенциал скоростей, будет в ортогональной системе криволинейных координат, согласно (*), иметь вид

Сохраняя ту же систему координат (l, m, e), что и в случае осесимметричного обтекания тела вращения, и используя выражения коэффициентов Ламе (2), перепишем предыдущее уравнение в форме

(13)

Будем искать решение этого уравнения в виде произведения двух функций

j = N( l , m ) Е( e );


тогда, подставляя последнее выражение в уравнение (13) и разделяя функции независимых переменных, получим систему уравнений (k – произвольное число, которое будем считать положительным и целым)

Первое уравнение имеет решение: Е = A cos k e + В sin k e ;

второе, если положить N = L( l ) М( m ) и разделить переменные, может быть приведено к системе уравнений

имеющей в качестве частных решений так называемые присоединенные функцииЛежандра[4]

(14)

К-во Просмотров: 323
Бесплатно скачать Курсовая работа: Продольное и поперечное обтекание тел вращения