Курсовая работа: Продольное и поперечное обтекание тел вращения
или после подстановки разложения (7)
Переписывая второе равенство в виде
подставим под знак суммы выражение для Pn из основного дифференциального уравнения функций Лежандра (5)
Тогда будем иметь
Интегрируя по m и добавляя необходимую функцию от l, получим окончательное выражение для функции тока
(8)
Уравнение нулевой поверхности тока будет
(9)
Сравнивая его с заданным уравнением профиля тела вращения в эллиптических координатах, можно определить величины коэффициентов Аn , что и решает задачу. Конечно, именно этот пункт и является наиболее сложным с вычислительной стороны.
Имея выражение потенциала скоростей, найдем скорость по формуле (10).
2. Поперечное обтекание тел вращения
Наряду с продольным обтеканием тел вращения представляет интерес и поперечное обтекание, перпендикулярное (Приложение 1, б) к оси симметрии тела. Из сложения этих двух потоков можно получить обтекание тела вращения под любым углом .
В этом случае уже не получается осесимметричного движения. Уравнение Лапласа, определяющее потенциал скоростей, будет в ортогональной системе криволинейных координат, согласно (*), иметь вид
Сохраняя ту же систему координат (l, m, e), что и в случае осесимметричного обтекания тела вращения, и используя выражения коэффициентов Ламе (2), перепишем предыдущее уравнение в форме
(13)
Будем искать решение этого уравнения в виде произведения двух функций
j = N( l , m ) Е( e );
тогда, подставляя последнее выражение в уравнение (13) и разделяя функции независимых переменных, получим систему уравнений (k – произвольное число, которое будем считать положительным и целым)
Первое уравнение имеет решение: Е = A cos k e + В sin k e ;
второе, если положить N = L( l ) М( m ) и разделить переменные, может быть приведено к системе уравнений
имеющей в качестве частных решений так называемые присоединенные функцииЛежандра[4]
(14)