Курсовая работа: Проектирование привода пресс-автомата с плавающим ползуном
Используя теорему мощностей, можно записать формулу для расчёта статического момента, предназначенного для преодоления сил статического сопротивления:
где Fi – сила статического сопротивления, приложенная в i-ой точке механизма;
Vi – линейная скорость i-ой точки механизма;
ω1- угловая скорость кривошипа 1;
Fi^(Vi/ω1) – угол между вектором i-ой силы и вектором скорости точки её приложения;
n – число сил сопротивления статического характера.
Статический момент, предназначенный для преодоления сил статического сопротивления вычисляется по формуле:
Мст= - [G 2 ·(VB 2/ω1 )·cos(G 2, VB 2/ω1 )+G 3 ·(VB 2/ω1 )·cos(G 3, VB 2/ω1 )+ G 4 · ·(VB 4/ω1 )·cos(G 4, VB 4/ω1 )+G 5 ·(VE /ω1 )·cos(G 5, VE /ω1 )+Q ·(VB 4/ω1 ) ·cos(Q , VB 4/ω1 )] , (3)
Третье слагаемое равно нулю, т.к. угол G 4, VB 4/ω1 равен 90ْ или 270ْ в зависимости от положения пуансона, следовательно, cos(G 4, VB 4/ω1 )=0 во всех положениях.
Пятое слагаемое нужно записывать со знаком минус (угол Q , VB 4/ω1 =180ْ , cos180ْ =-1); оно не равно нулю в те моменты времени, когда пуансон выдавливает заготовку, следовательно, формула (3) примет вид:
Мст= - [G 2 ·(VB 2/ω1 )·cos(G 2, VB 2/ω1 )+G 3 ·(VB 2/ω1 )·cos(G 3, VB 2/ω1 )+G 5 · ·(VE /ω1 )·cos(G 5, VE /ω1 )-Q ·(VB 4/ω1 )] , (4)
Значения углов между вектором i-ого усилия и вектором скорости i-ой точки приведены в таблице 3.
Таблица 3. Значения углов между вектором 1-ого усилия и вектором 1-ой точки.
№ положения | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 |
φ, рад | 0 | π/6 | π/3 | π/2 | 2π/3 | 5π/6 | π | 7π/6 | 4π/3 | 3π/2 | 5π/3 | 11π/6 | 2π |
G 2, VB 2/ ω 1 | 180 | 128 | 104 | 90 | 77 | 52 | 0 | 46 | 69,5 | 90 | 110 | 132 | 180 |
G3,VB2/ω1 | 180 | 128 | 104 | 90 | 77 | 52 | 0 | 46 | 69,5 | 90 | 110 | 132 | 180 |
G5,VE/ω1 | VE=0 | 79 | 84,5 | 90 | 98,5 | 102 | VE=0 | 78 | 82 | 90 | 97 | 101 | VE=0 |
Проведём расчёт Мст для каждого из выбранных положений механизма:
Мст1=-(2500·0,025·cos(180ْ)+800·0,025·cos(180ْ)+1500·0)=-(-62,5-20)=82,5 (н·м);
Мст2=-(2500·0,032·cos(128ْ)+800·0,032·cos(128ْ)+1500·0,012·cos(79ْ))=-(-49,25-15,76+3,43)=61,58 (н·м);
Мст3=-(2500·0,046·cos(104ْ)+800·0,046·cos(104ْ)+1500·0,023·cos(84,5ْ))=-(-27,82-8,9+3,31)=33,41 (н·м);
Мст4=-(2500·0,05·cos(90ْ)+800·0,05·cos(90ْ)+1500·0,025·cos(90ْ)-1750·0,05)=-(0+0+0-87,5)=87,5 (н·м);
Мст5=-(2500·0,043·cos(77ْ)+800·0,043·cos(77ْ)+1500·0,02·cos(98,5ْ)-5540·0,042)= -(24,18+7,74-4,43-232,68)=205,19 (н·м);
Мст6=-(2500·0,031·cos(52ْ)+800·0,031·cos(52ْ)+1500·0,011·cos(102ْ))=-(47,71+15,27-3,43)= -59,55 (н·м);
Мст7=-(2500·0,025·cos(0ْ )+800·0,025·cos(0ْ )+1500·0)=-(62,5+20)=-82,5 (н·м);
Мст8=-(2500·0,037·cos(46ْ)+800·0,037·cos(46ْ)+1500·0,014·cos(78ْ))=-(64,26+20,56+4,37)= -89,19 (н·м);
Мст9=-(2500·0,045·cos(69,5ْ)+800·0,045·cos(69,5ْ)+1500·0,021·cos(82ْ))= -(39,4+12,61+4,38)=-56,39 (н·м);
Мст10=-(2500·0,05·cos(90ْ )+800·0,05·cos(90ْ )+1500·0,025·cos(90ْ ))=-(0+0+0)=0 (н·м);
Мст11=-(2500·0,046·cos(110ْ)+800·0,046·cos(110ْ)+1500·0,022·cos(97ْ))=-(-39,33-12,59-4,02)=47,9 (н·м);
Мст12=-(2500·0,036·cos(132ْ)+800·0,036·cos(132ْ)+1500·0,014·cos(101ْ))=-(-60,22-19,27-4,01)=75,48 (н·м);
Мст13=-(2500·0,025·cos(180ْ )+800·0,025·cos(180ْ )+1500·0)=-(-62,5-20)=82,5 (н·м).
ОПРЕДЕЛЕНИЕ МОМЕНТА МДИН (Φ) ДЛЯ ПРЕОДОЛЕНИЯ СИЛ ДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ
Силы динамического сопротивления, действующие в механизме, также как и силы статического сопротивления могут быть приведены к кривошипу. Динамический момент найдём по формуле: