Курсовая работа: Проектирование привода
Внутреннее кольцо подшипника вращается вместе с валом относительно действующей радиальной нагрузки и имеет, циркуляционное нагружение. Отношение эквивалентной динамической нагрузки к динамической грузоподъемности Pr/Cr = 3600/19300 = 0,186 , следовательно поле допуска вала при установке подшипника – k6.
Наружное кольцо подшипника неподвижно относительно радиальной нагрузки и подвергается местному нагружению. Тогда поле допуска отверстия - H7.
6. Расчет валов на статическую прочность и сопротивление усталости
Основными нагрузками на валы являются силы от передач. Силы на валы передают через насажанные на них детали: зубчатые колеса, барабан и полумуфты. При расчетах принимают, что насажанные на вал детали передают силы и моменты валу на середине своей ширины. Под действием постоянных по значению и направлению сил во вращающихся валах возникают напряжения, изменяющиеся по симметричному циклу. Основными материалами для валов служат углеродистые и легированные стали – 45, 40Х.
6.1. Тихоходный вал.
6.1.1. Расчет тихоходного вала на прочность.
Марка стали тихоходного вала – Сталь 45.
Проверку статической прочности выполняют в целях предупреждения пластических деформаций в период действия кратковременных перегрузок.
В расчете используется коэффициент перегрузки
Кп = Тmax /Т,
где Тmax - максимальный кратковременно действующий вращающий момент (момент перегрузки),
Т – номинальный (расчетный) вращающий момент.
Для выбранного ранее двигателя Кп = 2,2.
По рассчитанным ранее реакциям в опорах и известных силах, действующих на валах строим эпюры изгибающих моментов в вертикальной и горизонтальной плоскостях, и эпюру крутящего момента. Данные эпюры были приведены ранее, при определении реакций в опорах подшипников.
В расчете определяют нормальные s и касательные t напряжения в рассматриваемом сечении вала при действии максимальных нагрузок:
При анализе эпюры изгибающих моментов, приходим к выводу, что нас интересуют 2 сечения, представляющих опасность, оценку их значимости будем производить по величинам нормальных и касательных напряжений, т.к. имеем разные моменты сопротивления.
s= 103 *Mmax / W + Fmax / A,
t = 103 *Mkmax /Wk ,
где M1max = Кп *М = 108,5*2,2 = 238,7 Нм.
F1max = Кп *Fa = 2,2*484,5 = 1066 Н.
W = p*D3 /32,- сечение круглое для контактной поверхности колеса и вала.
где D1 = 40 мм,
W1 = 6283,2 мм3
W1k = 2*W = 12566,4 мм3 .
А = p*d2 /4,
A1 = 1256,6 мм2
s1 = 38,8 МПа.
Мkmax = Кп *Т = 2,2*184,9 = 407 Нм.
t 1= 32,4 МПа.
Переходим к рассмотрению следующего сечения:
где M2max = Кп *М2 = 229 Нм.
F2max = Кп *F2a = 1066 Н.