Курсовая работа: Проектирование системы автоматического управления
Рассмотрим линейную систему без неопределенности, описываемую в форме матричных операторов:
Очевидно, что для линейной системы без неопределенности справедливы следующие зависимости: ; ; .
Получаем следующую формулу расчета спектральной характеристики выходного сигнала:
Спектральная характеристика невязки между эталонной и реальной переходными характеристиками имеет вид:
,
где – варьируемые параметры корректирующих устройств, подлежащие определению.
В приведенной формуле используется зависимость , усложняющая вычислительный процесс. Можно воспользоваться другим, более простым подходом. Определим спектральную характеристику невязки следующим образом:
.
Перейдем к системе с неопределенностью:
,
где – матричный оператор объекта, элементы которого зависят от .
Необходимо минимизировать целевую функцию вида: ,
где – число элементов выборки.
Полученный функционал содержит полную информацию о параметрической неопределенности.
В качестве корректирующего устройства выберем ПИД-регулятор:
.
Пусть выборка составляет 1000 элементов. В качестве эталонного сигнала выберем . В качестве ортонормированного базиса выберем систему функций Уолша (128 функций). Интервал исследования – .
имеют интервальную неопределённость 20%
Приведем здесь клетку матричного оператора интегрирования:
Получены следующие значения коэффициентов регулятора:
Несколько примеров для произвольно взятых , на которых представлены переходные характеристики эталонной системы и 4-х из семейства систем представлены на рис. 13.
Рис. 13. Графики эталонной и реальной переходных характеристик для разных значений параметра : , , ,,
Приложение.
Программа 1.
Решения уравнения методом Стеффенсена.
function Stefens
clc
e=10.^-5;