Курсовая работа: Прогнозирование функций по методу наименьших квадратов
При генерации шума мы используем два закона: нормальное и логнормальное распределение.
Нормальный закон: Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности:
(9)
Функция распределения F(x) в рассматриваемом случае принимает вид:
(10)
График 1 – распределение плотности вероятности нормального закона:
Рисунок 1. Плотность вероятности нормального закона
Говорят, что случайная величина X имеет логнормальное распределение с параметрами μ, σ, если X = exp(Y), где Y имеет нормальное распределение с параметрами μ, σ. Случайная величина с логнормальным распределением является непрерывной, и принимает только положительные значения. Графики плотности (привязан к левой вертикальной оси ординат) и функции (привязан к правой оси ординат) логнормального распределения с параметрами μ = 0, σ = 0.7 приведен на следующем рисунке 2:
Рисунок 2. Логнормальное распределение
Плотность распределения логнормального закона:
(11)
Функция распределения:
(12)
Для определения степени расхождения теоретической кривой и статистических данных пользуются критериями согласия. Наиболее часто для проверки гипотезы о законе распределения используются 2 критерия: критерий λ-Колмогорова и критерий χ2 -Пирсона.
Расчетное значение для критерия χ2 -Пирсона вычисляется по формуле:
, где (13)
– (14)
вероятность попадания в интервал разбиения с номером i , mi – число значений функции в интервале разбиения, m, σ – математическое ожидание и с.к.о. случайной величины X , Φ* – интеграл вероятностей.
Чтобы определить функциональную зависимость между величинами по результатам наблюдений, используем метод наименьших квадратов (МНК):
Пусть из опыта получены точки:
x1, y1,
xn, yn
Требуется найти уравнение прямой y=ax+b (15), наилучшим образом согласующейся с опытными точками. Пусть мы нашли такую прямую. Обозначим через δi расстояние опытной точки от этой прямой (измеренное параллельно оси y).
Из уравнения (15) следует, что:
(16)
Чем меньше числа по абсолютной величине, тем лучше подобрана прямая (15). В качестве характеристики точности подбора прямой (15) можно принять сумму квадратов:
(17)