Курсовая работа: Расчет линейной непрерывной двухконтурной САУ по заданным требованиям к качеству ее работы
Рисунок 1 .2— Структурная схема исходной САУ
Проанализируем устойчивость САУ, используя критерий Рауса-Гурвица, суть и основные положения которого описаны в источнике [2]. Для анализа по этому критерию необходимо получить характеристический полином. Для получения характеристического полинома найдем передаточную функцию системы:
, (1.4)
где — передаточная функция разомкнутой САУ.
Подставляя данные, получим:
.
Так как один из корней знаменателя нулевой, то система находится на границе устойчивости.
Теперь получим выражение для замкнутой САУ с единичной отрицательной обратной связью:
, (1.5)
где — передаточная функция замкнутой САУ;
— передаточная функция обратной связи. В данном случае .
Подставив в формулу (1.5) рассчитанные ранее числовые значения, получим:
.
Получили характеристический полином 4-го порядка.
Для определения устойчивости системы запишем определитель Гурвица:
, (1.6)
где — коэффициенты знаменателя соответственно.
Подставляя числа, получим:
.
Для устойчивости системы необходимо, чтобы, , , , , . Проверяем:
.
.
.
.
Так как , то система неустойчива, а это значит, что необходимо проектировать корректирующие устройства.
2. ДИНАМИЧЕСКИЙ СИНТЕЗ САУ ПО ЗАДАННЫМ ТРЕБОВАНИЯМ К КАЧЕСТВУ ЕЕ РАБОТЫ
2.1 Определение желаемой передаточной функции
В соответствии с вариантом задания принимаем желаемую ЛАЧХ типа . Ее передаточная функция будет иметь вид:
, (2.1)
где — передаточная функция желаемой системы;
— коэффициент усиления системы;