Курсовая работа: Расчёт параметров изгиба прямоугольных пластин судового корпуса
Действующие в плоскости пластины усилия вызывают напряжения, равномерно распределенные по ее толщине, которые принято называть цепными. Поперечная нагрузка вызывает появление напряжений изгиба, распределенных по толщине пластин по линейному закону.
Подавляющее большинство пластин судового корпуса имеет прямоугольную форму опорного контура. Если одна из сторон этого опорного контура значительно больше другой, пластины будут изгибаться по цилиндрической поверхности.
Практически, если у пластины отношение сторон опорного контура превышает 2,5-З и она загружена равномерно распределенной поперечной нагрузкой, то на значительной части ее длины, за исключением небольших участков, примыкающих к коротким кромкам, кривизна будет только в одном направлении. К изучению изгиба таких пластин, как будет показано ниже, может быть непосредственно применена теория изгиба балок.
Если отношение сторон опорного контура пластины мало отличается от единицы, то при ее изгибе появляется кривизна в двух направлениях, и форма упругой поверхности получается весьма сложной; все расчетные зависимости соответственно усложняются.
При изгибе под действием поперечной нагрузки опорные кромки судовых пластин, жестко скрепленные с балками набора перекрытия, стремятся сблизиться. Такому сближению препятствуют балки набора; вследствие этого в пластине наряду с напряжениями от изгиба возникают напряжения, равномерно распределенные по их толщине. Цепные напряжения называются также напряжениями распора, а сами связи, препятствующие сближению опорных кромок пластин, - распорами. Заметим, что цепные напряжения в пластинах судового корпуса могут появляться не только за счет наличия распор, но и за счет участия пластин в общем изгибе судна.
Влияние цепных напряжений на характер изгиба пластин может быть весьма различным для различных пластин. Оно зависит от соотношения между размерами пластины в плане и ее толщиной, от величины поперечной нагрузки и ряда других факторов.
В зависимости от характера работы пластины судового корпуса можно разбить на следующие группы:
1. Пластины, при изгибе которых влиянием цепных напряжений на элементы изгиба можно пренебречь. Такие пластины в дальнейшем будем называть абсолютно жесткими.
2. Пластины, при изгибе которых влиянием цепных напряжений на элементы изгиба пренебречь нельзя. Такие пластины будем называть пластинами конечной жесткости.
Следует отметить, что пластины можно относить к той или иной категории только на основании расчета. Так, одна и та же пластина в зависимости от величины действующей на неё продольной нагрузки может изгибаться либо как абсолютно жесткая, либо как пластина конечной жесткости.
Выражения, устанавливающие связь между перемещениями пластины и интенсивности усилий, приложенных к кромкам пластины.
Выражения для интенсивности усилий, приложенных к кромкам пластины, запишутся в виде
(3)
Определение напряжений изгиба пластины.
Напряжения изгиба вычисляются по формуле:
(4)
где - момент сопротивление балки-полоски единичной ширины.
Определение наибольшей стрелки прогиба в центре пластины.
Наибольшая стрелка прогиба будет в центре пластины
(5)
Определение изгибающих моментов М1 в центре пластины в сечениях, перпендикулярных оси ох, и М2 - в сечении, перпендикулярном оси оу.
Изгибающие моменты М1 в центре пластины, в сечениях, перпендикулярных оси ох, и М2 - в сечении, перпендикулярном оси оу, определяются по формулам:
(6)
Определение наибольших значений перерезывающих сил по середине опорных кромок пластины, N1 и N2 .
Наибольшие значения перерезывающих сил будут по середине опорных кромок пластины, т.е. N1 на кромках х = 0; х = а и N2 на кромках у = ;
(7)
Определение наибольших значений реакций опорных кромок по их середине г1 и r2 .
Наибольшие значения реакций опорных кромок будут по середине этих кромок, г1 -на кромках х = 0 и х= а; r2 на кромках
у = ;