Курсовая работа: Расчет профиля диффузии сурьмы в кремнии
- генерации частиц внешним источником с локальной скоростью , тогда в объём вводится за 1с частиц.
Уравнение баланса имеет вид
Оно справедливо для любого объёма V. Преобразовав поверхностный интеграл в объёмный с помощью теоремы Остроградского-Гаусса, получим уравнение непрерывности в виде
(8)
Или, после подстановки (1) в (8) ,
(9)
Внутренние источники и стоки часто можно считать точечными объектами, распределёнными с концентрациями и . В этом случае вероятности генерации и захвата можно представить в виде
(10)
(11)
где и - коэффициенты генерации и захвата. Если внутренние источники и стоки не насыщающиеся, то их концентрации не зависят от времени. Если же концентрации и изменяются вследствие взаимодействия с диффундирующими частицами, то сами они должны находиться из уравнений баланса вида
(12)
(13)
с начальными условиями
(14)
(15)
Таким образом, в этом случае следует решать систему уравнений (8), (12), (13). Конкретный вид слагаемых, описывающих изменения концентраций внутренних источников и стоков, определяется физическими механизмами взаимодействия их с диффундирующими частицами.
Например, в полупроводниках возможна ситуация, когда сток, захвативший диффузант, превращается в источник, который, после высвобождения диффузанта, снова превращается в сток. В этом случае
Уравнения (8) и (9) принимают вид
(16)
(17)
Если внутренние источники и стоки подвижны, то в уравнения (16) и (17) следует добавить слагаемые, описывающие их диффузию и дрейф,
(18)
(19)
Уравнения (9), (18) и (19) необходимо дополнить граничными условиями на свободной границе с вакуумом и границах раздела контактирующих сред различной физической природы.
Если через свободную поверхность производится диффузия примеси в объём («загонка примеси»), то на ней задаётся постоянная концентрация,
(20)
Если производится диффузия примеси из заданного начального распределения («разгонка примеси»), то свободная поверхность считается непроницаемой для примеси, что эквивалентно равенству нулю производной от по нормали к ,
(21)
На границе раздела сред 1 и 2 задаются условие непрерывности потока дифузанта
(22)
и условие соответствия концентраций
, (23)
где - коэффициент распределения, равный отношению предельных растворимостей диффузанта в средах 1 и 2.[1]
1.2 Механизмы диффузии атомов в полупроводниках
В кристаллических полупроводниках диффундируют собственные и примесные атомы. Диффузия собственных атомов называется самодиффузией, диффузия примесных атомов - примесной диффузией.
Назовём регулярным положением атома в кристалле то, в котором он проявляет присущие ему предназначение и свойства. Регулярные положения собственных атомов – в узлах кристаллической решётки. Для примесных атомов регулярными могут быть как узлы, так и междуузлия. В узлах располагаются примеси, создающие мелкие донорные и акцепторные центры - . Именно их внедрение в узлы в требуемом количестве является целью микроэлектронной технологии. Примеси малого радиуса располагаются в междуузлиях.
Примеси внедрения малого радиуса диффундируют по прямому междуузельному механизму. Это значит, что они совершают переход или акт миграции, или скачок, непосредственно из одного междуузлия в другое (рис. 2).
Рис. 2. Прямой междуузельный механизм диффузии
Коэффициент диффузии по прямому междуузельному механизму,
(24)
где , - энергия активации диффузии примеси внедрения.
Собственные атомы и примеси замещения диффундируют при посредстве элементарных точечных дефектов кристаллической решётки – вакансий и собственных междуузельных атомов . Вакансия – это узел кристаллической решётки, из которого удалён собственный атом. Собственный междуузельный атом суть аналог примеси внедрения (рис. 3).
Рис. 3. Вакансия и собственный междуузельный атом
Вакансии и собственные междуузельные атомы являются необъемлемой подсистемой кристалла. В состоянии термодинамического равновесия они образуются по механизму Шоттки – при переходе атома из узла в объёме на поверхность создаётся вакансия, при переходе собственного атома с поверхности в объём создаётся междуузельный атом. Концентрации равновесных точечных дефектов и зависят только от температуры и определяются свободными энергиями Гиббса их образования и . Из обзора Фэхи, Гриффина и Пламмера [2]
(25)
При , .
По соседству с вакансиями и междуузельными атомами всегда имеются занятые узлы решётки или свободные междуузлия, в которые можно совершить скачок, поэтому подвижность их очень высока. Они совершают термически активированные случайные блуждания, преодолевая потенциальные барьеры между своими регулярными положениями.
Роль точечных дефектов в диффузии примесей замещения заключается в следующем. Примесный атом , находящийся в узле, захватывает точечный дефект и образует с ним высокоподвижный комплекс, который движется по кристаллу до тех пор, пока вследствие взаимодействия с другим точечным дефектом не исчезнет. Примесный атом в результате оказывается в другом узле решётки.