Курсовая работа: Распространение волн в световодах

и при m нечетных

. (37b)

Итак, внутри диэлектрического световода, как и внутри металлического, суперпозиция падающей и отраженной волн дает бегущую вдоль оси z плоскую волну и стоячую волну вдоль оси x (или плоскую неоднородную волну распространяющуюся вдоль оси z). Возможны четные и нечетные волны, соответствующие четному или нечетному закону распределения вдоль оси x. По обе стороны световода имеются две бегущие вдоль его границы плоские неоднородные волны, амплитуда которых экспоненциально убывает при удалении от граничной поверхности (рис. 10).

Рис. 10. − Распределение амплитуды поля в поперечном сечении

диэлектрического световода: a) четная волна, b) нечетная волна

3.2 Дисперсионное уравнение. Распространяющиеся моды

Полученное ранее дисперсионное уравнение (36) можно привести к виду

, (38)

откуда для четных и нечетных m имеем

если , то . (39)

Решение его в аналитическом виде невозможно, ибо это трансцендентное уравнение. Однако можно предложить простой и наглядный графический способ его решения, если учесть, что g и a должны удовлетворять условию, которое может быть получено из следующих очевидных соотношений (см. рис. 9)

Откуда искомое условие

. (40)

Графический способ проиллюстрируем для (рис. 11). Строим зависимость от согласно (39). Для каждой частоты решение должно удовлетворять также (40), т.е. должно лежать на пересечении построенных кривых с окружностью радиуса V, равного


. (41)

Величина V получила название приведенной частоты.

Таким образом, задавая w, находим V, затем определяем точку пересечения с кривой зависимости от и соответствующее значение . С ростом частоты V увеличивается и, как видно из рисунка 11, увеличиваются и .

?????? p ?????????? ????? ????????? ???? ????? ?????????? ?????????? (37) ? ???????? ??????????? ????????? ?????, ????????? ??? ????????????? ???? ???????? . ?????? ????? ????? ?????????? ?????. ????????, ??? ? ??????????????? ????????? ?? ???????????? ??????? ? ??? ???????????? ???????? ??? ????? ???????????? ?????????? ????????? ???. ?????? ???? ????????? ?? ??????? ??? ??????? ?????????? ??????? ????????? (??? ????????) ??????????????? ?????? ?? ???. 11, ?? ???? ??? ?????????? ???????

(42)

Откуда критическая частота p-ой моды равна

(43)

Величину wс можно назвать критической частотой данного световода. Физический смысл ее таков – это критическая частота моды с индексом p=1.


Рис. 11. − К решению дисперсионного уравнения

Таким образом, новые моды возникают на частотах и существуют соответственно при . Для четных мод наблюдается существенное отличие от металлического световода, а именно, существование нулевой моды с p=0. Следовательно, для диэлектрического световода нет нижнего частотного порога.

Все распространяющиеся моды возникают, когда угол q удовлетворяет условию , т.е. , где угол qс – критический угол. Иными словами, распространяющиеся моды могут существовать только в случае, когда «первоначальная» плоская волна вводится под углами .

Однако, какая мода (с каким номером) при этом возникает зависит от частоты (43). Возбудившаяся мода будет существовать для всех . С ростом частоты угол , под которым она распространяется, будет уменьшаться ( при ).

Рассмотрим как изменяется при этом структура и фазовая скорость возникшей моды. Вблизи критической частоты и . Откуда фазовая скорость её равна , т.е. фазовой скорости во внешней среде. Поскольку , то электрическое поле этой волны не убывает при удалении от границы раздела во вторую среду. В этой среде поле имеет вид однородной плоской волны (рис. 12.а). Мощность, распространяющаяся внутри световода, составляет малую часть от всей мощности волны. С ростом частоты и возрастают.

К-во Просмотров: 399
Бесплатно скачать Курсовая работа: Распространение волн в световодах