Курсовая работа: Равновесные и поляризационные диаграммы потенциал-pH
ВВЕДЕНИЕ
В настоящее время большую важность имеет возможность оценивать устойчивость металлов и их сплавов к коррозии в тех или иных условиях. Эту возможность позволяет реализовать на практике применение равновесных и поляризационных диаграмм в координатах потенциал – pH.
На основе диаграмм электрохимической устойчивости (равновесных диаграмм потенциал – pH или диаграмм Пурбе) можно делать выводы о возможности устойчивости металлов и их сплавах, условиях образования пассивирующей пленки, появлении питтингов и перехода металла в ионы.
Однако, у диаграмм Пурбе есть недостаток, заключающийся в том, что в реальности состояние электрохимического равновесия не достигается.
Для того, чтобы описать коррозионно-электрохимическое поведение металлов в реальных условиях, используется поляризационная диаграмма потенциал – рН.
Поляризационная диаграмма основана на реальных поляризационных кривых и является «коррозионным паспортом» данного сплава.
Целью данной работы является изучение равновесных и поляризационных диаграмм потенциал – pH, принципах их построения и анализа, а также расчет и построение диаграммы электрохимической устойчивости для системы Cu – H2 O.
1. ЛИТЕРАТУРНЫЙ ОБЗОР
1.1 Термодинамика электрохимических систем и электродных процессов. Условная водородная шкала. Правило знаков ЭДС и электродных потенциалов. Электрохимический потенциал. Электрохимические равновесия
Пусть в электрохимической системе обратимо и изотермически протекает процесс:
(1.1.1)
Работа по перемещению электрического заряда равна:
(1.1.2)
Для обратимой реакции:
(1.1.3)
Полезная работа обратимого процесса максимальна и равна убыли изобарного потенциала системы, т. е:
(1.1.4) при p,T=const
Изменение изобарного потенциала вызвано совокупностью электрохимических реакций на электродах, т. Е. суммарной химической реакцией или другими физико-химическими процессами (растворение, выравнивание концентраций, фазовое превращение и др.).
С учетом того, что U=E и , и формул (1.1.2), (1.1.3) и (1.1.4), получаем:
(1.1.5)
Производная ΔG по температуре:
(1.1.6)
Таким образом, измерив ЭДС системы и ее температурный коэффициент, можно легко найти величины ΔG и ΔS для суммарного процесса, протекающего в электрохимической системе. Этот процесс является самопроизвольным, следовательно, ΔG < 0.
Важную термодинамическую характеристику этого процесса – изменение энтальпии – вычисляют по уравнению Гиббса – Гельмгольца.
(1.1.7)
(1.8)
ЭДС электрохимической системы находят по уравнению:
(1.9)
Чтобы связать ЭДС с константой равновесии, используют изотерму Вант – Гоффа. Если предположить, что реакция (1.1.1) протекает в жидком растворе, то:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--