Курсовая работа: Равновесные и поляризационные диаграммы потенциал-pH
(1.2.20)
Если предположить, что концентрации двух растворов отличаются не очень сильно или оба раствора достаточно разбавлены и, следовательно, можно принять постоянство чисел переноса в переходной зоне на границе двух растворов, то из уравнения (1.2.20) находим
(1.2.21)
Складывая уравнения (1.2.19) и (1.2.21) и заменяя при этом z+ =n/υ+ и │z- │=n/υ- получаем для разности потенциалов на концах цепи:
(1.2.22)
где - активность соли; - средняя активность.
При работе цепи, когда >, Е>0, следовательно, на правом электроде идет катодный процесс выделения металла. Если через цепь прошел 1 фарадей электричества, то за счет электролиза из правого раствора будет удален 1 г-экв катионов. Но через границу двух растворов в правую часть цепи перейдет t+ г-экв катионов, так что суммарная убыль катионов из правого раствора составит 1– t+ = t- г-экв. Одновременно из правого раствора в левый перейдет t- г-экв анионов. Таким образом, прохождение через цепь 1 фарадея сопровождается убылью t- г-экв соли из правого раствора. Аналогичный анализ процессов в левой части цепи показывает, что при прохождении через цепь 1 фарадея здесь возникает t- г-экв соли. Следовательно, работа концентрационной цепи с переносом сопровождается выравниванием концентраций в обоих растворах. Данный вывод оказывается справедливым и при условии <, но при этом все процессы в цепи протекают в обратном направлении.
В химических цепях источником электрической энергии является свободная энергия химической реакции, протекающей в электрохимической системе.
В химических цепях без переноса один из электродов должен быть обратимым по катиону, а другой – по аниону.
Примеры:
амальгамный электрод – электрод 2-ого рода:
Ag│K(Hg)│KCl│AgCl, Ag
газовый электрод – электрод 2-ого рода:
обратимый по катионам
Pt, H2 │HCl│Hg2 Cl2 , Hg│Pt
обратимый по анионам
Pt, H2 │HCl│Cl2 , Pt
электрод 1-ого рода – газовый электрод:
Zn│ZnCl2 │Cl2 , Pt│Zn
Среди различных химических цепей без переноса большое значение имеет цепь
Pt│Cd(Hg)│CdSO4 (насыщенный раствор)│Hg2 SO4 , Hg│Pt
лежащая в основе стандартного элемента Вестона. ЭДС этого элемента отличается большой стабильностью и малым температурным коэффициентом, а потому он используется в качестве стандарта при потенциометрических измерениях.
Однако подавляющее большинство химических цепей – это цепи с переносом, в которых растворы соединены или непосредственно, или через солевой мостик. Комбинируя различные окислительно-восстановительные полуреакции, можно построить очень большое число химических цепей. Разность соответствующих стандартных потенциалов позволяет в первом приближении оценить ЭДС этих цепей. Точное значение разности потенциалов на концах химической цепи в переносом рассчитать не удается, во-первых, из-за невозможности точного определения диффузионного потенциала и, во-вторых, из-за неизбежной замены активностей отдельных ионов в формуле Нернста средними активностями или прсото концентрациями этих ионов.
Пример химической цепи с переносом: элемент Даниэля – Якоби:
Cu│Zn│ZnSO4 ¦CuSO4 │Cu
Разность потенциалов на концах этой цепи равна
(1.2.23)
1.3 Равновесные диаграммы потенциал- pH (диаграммы Пурбе или диаграммы электрохимического равновесия). Принципы построения. Использование диаграмм Пурбе
Одним из наиболее значительных достижений электрохимии 60-х годов является построение диаграмм pH-потенциал для всех важных металлов, названных в честь автора диаграммами Пурбе.