Курсовая работа: Разработка и проектирование тормозной рычажной передачи 4-х осевого крытого вагона на тележках модели 18-100
Для уточенного выбора n целесообразно применение другого метода, предложенного Иноземцевым В.Г., учитывающим условия непрерывного торможения вагонов на крутом затяжном спуске, когда длительно не производится полный отпуск автотормозов и поэтому АРП не стягивает РП.
В таком режиме торможения общий расчетный объемный износ чугунных тормозных колодок, действующих на одно колесо, с учетом технологическах факторов может достигать 250 см3 .
С учетом выхода штока ТЦ lупр , от упругих деформаций РП и хода поршня от износа тормозных колодок общий выход штока не должен превышать максимально возможной величины Lmax .
Из этого условия:
,
где: mk – число колодок действующее на колесо;
Δc – нормальный средний зазор между колодкой и колесом, Δс =0,5-0,8 см
Для крытых вагонов, оборудованных чугунными тормозными колодками и имеющих один ТЦ, рекомендуют принимать: Lmax = 18см; lупр =6см.
В качестве исходных данных используем результаты расчетов полученных ранее
допустимое нажатие на чугунные колодки К = 39,65 кН. Передаточное число РП n = 9,09.
Далее определим dТЦ , по вышеперечисленной методике.
1.
2.Усилие отпускной пружины ТЦ:
3.Усилие возвратной пружины АРП № 574 Б, приведенное к штоку ТЦ:
4.Диаметр ТЦ:
Принимаем стандартный ближайший размер dТЦ = 356 мм
5. Выбор типа TЦ:
Для пневматической части автотормоза рефрижераторного вагона принимаем ТЦ усл. № 188 Б.
2.6 Выбор объема запасного резервуара
При проектировании тормозного оборудования объем ЗР выбирают в соответствии с принятым диаметром ТЦ, из расчета обеспечения при ПСТ и ЭТ давления в ТЦ не менее 0,38 MПa, при максимальном выходе штока поршня 200 мм. Таковы требования МПС. Исходя из закона Бойля-Мариота, рассматривая состояние пневматической части автотормоза вагона в отпущенном и тормозном состоянии. При этом во внимание принимаются рабочие объекты автотормоза и величины давления воздуха в них.
Рис. 2.3 Схема взаимодействия элементов пневматической части тормоза вагона при отпуске
Рис. 2.4 Схема взаимодействия элементов пневматической части тормоза вагона при торможении
В отпущенном состоянии тормоза объем ЗР-Vзр наполнен сжатым воздухом из М до зарядного давления Рз, а объём ТЦ VТО сообщен с Ат, таким образом давление в объеме VТО устанавливается Ра.(Рис. 2.3)
В заторможенном состоянии ТЦ сообщается с ЗР, а канал Ат перекрыт золотником 2, связанным с поршнем чувствительного элемента 1. Поэтому происходит перемещение поршня на величину выхода штока 3, что вызывает увеличение объема ТЦ до VТЦ .
В соответствие с законом Бойля-Мариота: