Курсовая работа: Разработка конструкции и технологии микроэлектронного варианта формирователя опорной частоты 10 МГц

°С


По номограммам находим конвективный коэффициент теплопередачи и коэффициент теплопередачи излучением от корпуса к среде

Вычислим суммарную тепловую проводимость во втором приближении

Перегрева корпуса во втором приближении

Во втором приближении значит повторяем расчёт, приняв за .

Определяем среднее значение температуры в третьем приближении

°С

По номограммам находим конвективный коэффициент теплопередачи и коэффициент теплопередачи излучением от корпуса к среде


Вычислим суммарную тепловую проводимость в третьем приближении

Перегрева корпуса в третьем приближении

Во третьем приближении значит считаем что перегрев корпуса .

Следовательно, среднеповерхностная температура корпуса микроблока:

°С

Определяем поверхность нагретой зоны:

0,060x0,048x0,0025 0,13х0,056x0,006м3

.

Рассчитываем средний зазор между поверхностью нагретой зоны и корпусом:

.

Определяем коэффициент теплопередачи кондукцией через воздушный зазор между нагретой зоной и корпусом.


,

где:

- коэффициент теплопроводности воздуха.

Практика показывает, что коэффициент теплопередачи излучением от нагретой зоны к корпусу мало зависит от размеров нагретой зоны и корпуса и составляет приблизительно .

К-во Просмотров: 527
Бесплатно скачать Курсовая работа: Разработка конструкции и технологии микроэлектронного варианта формирователя опорной частоты 10 МГц