Курсовая работа: Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса

Пусть произведено n испытаний, при этом некоторое событие А наступило m раз (m < n).

Число m называют абсолютной частотой (или просто частотой) события А, а отношениеР*(А) = называют относительной частотой события А.

При транспортировке из 10 000 арбузов испортилось 26. Здесь m = 26 - абсолютная частота испорченных арбузов, а Р*(А) = = 0,0026 - относительная.

Результаты многочисленных опытов и наблюдений помогают заключить: при проведении серий из n испытаний, когда число сравнительно мало, относительная частота Р*(А) принимает значения, которые могут довольно сильно отличаться друг от друга. Но с увеличением n - числа испытаний в сериях – относительная частота Р*(А) = приближается к некоторому числу Р(А), стабилизируясь возле него и принимая все более устойчивые значения.

Было проведено 10 серий бросаний монеты, по 1000 бросаний в каждой. Относительные частоты выпадения герба оказались равными 0,501 0,485; 0,509; 0,536; 0,485; 0,488; 0,500; 0,497; 0,494; 0,484. Эти частота группируются около числа 0,5.

По официальным данным шведской статистики относительные частоты рождения девочек по месяцам 1935 г. характеризуются следующими числами (расположены в порядке следования месяцев, начиная с января): 0,486; 0,489; 0,490; 0,471; 0,478; 0,482; 0,462; 0,484; 0,485; 0,491; 0,482; 0,47. Эти частоты группируются около числа 0,482.

Относительная частота события приближенно совпадает с его вероятностью, если число испытаний достаточна велико. Имеется огромный опытный материал по проверке последнего утверждения. Укажем еще один такой пример с бросанием монеты (приложение 1).

Здесь относительные частоты незначительно отклоняются от числа 0,5, причем тем меньше, чем больше число испытаний. При 4040 испытаниях отклонение равно 0,008, а при 24 000 - 0,0005.

Таких примеров очень много. Возникли целые науки о том, как же эффективно действовать в нашем случайном мире. Их задачей является уменьшение неприятностей от случайного при использовании самой случайности.

Таким образом, было рассмотрено два определения теории вероятностей: классическое и статистическое [6, 210].

Для решения задач по данной теме необходимо использовать основные правила и теоремы теории вероятности.

1.2 Правила и теоремы теории вероятностей

Теорема сложения вероятностей несовместимых событий

Суммой событий А и В называют событие С = А + В, состоящее в наступлении, по крайней мере, одного из событий А или В.

Испытание - стрельба двух стрелков (каждый делает по одному выстрелу). Событие А - попадание в мишень первым стрелком, событие В - попадание в мишень вторым стрелком. Суммой событий А и В будет событие С = А + В, состоящее в попадании в мишень, по крайней мере, одним стрелком.

Аналогично суммой конечного числа событий А1 , А2 , ..., Аk называют событие А = А1 + А2 + … + Аk , состоящее в наступлении хотя бы одного из событий Ai (i = 1,..., k).

Произведением событий А и В называют событие С = АВ, состоящее в том, что в результате испытания произошло и событие А и событие В.

Аналогично произведением конечного числа событий А1 , А2 , ..., Аk называют событие А = А1 А2 … Аk , , состоящее в том, что в результате испытания произошли все указанные события.

В условиях предыдущего примера произведением событий А и В будет событие С = АВ, состоящее в попадании в мишень двух стрелков.

Из определения непосредственно следует, что АВ = ВА.

Теорема. Вероятность суммы двух несовместимых событий А и В равна сумме вероятностей этих событий:

Р(А+В)=Р(А)+Р(В). (1)

Доказательство. Используем классическое определение вероятности. Предположим, что в данном испытании число всех элементарных событий равно n, событию А благоприятствуют k элементарных событий, событию В - I элементарных событий. Так как А и В - несовместимые события, то ни одно из элементарных событий U1 , U2 ,... , Un не может одновременно благоприятствовать и событию А и событию В. Следовательно, событию А + В будет благоприятствовать k + l элементарных событий. По определению вероятности Р(А)=, Р(В)=, Р(А+В)= откуда и следует утверждение теоремы.

Совершенно так же теорема формулируется и доказывается для любого конечного числа попарно несовместимых событий.

Следствие. Сумма вероятностей противоположных событий А и равна единице:

Р(А)+Р()= 1


Так как события А и несовместимы, то по доказанной выше теореме Р(А) + Р() = Р (А + ). Событие А + есть достоверное событие (ибо одно из событий А или произойдет). Поэтому Р (А + ) =1.

В урне 10 шаров: 3 красных, 5 синих и 2 белых. Какова вероятность вынуть цветной шар, если вынимается один шар? Вероятность вынуть красный шар Р(А) = , синий Р(В) = . Так как события А и В несовместимы, то по доказанной выше теореме

Р(А + В)= Р(А) + Р(В) = + = 0,8 [3, 25].

Теорема умножения вероятностей

К-во Просмотров: 287
Бесплатно скачать Курсовая работа: Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса